login
A343053
Table read by ascending antidiagonals: T(k, n) is the maximum vertex sum in a perimeter-magic k-gon of order n.
1
15, 24, 24, 40, 42, 33, 54, 65, 56, 42, 77, 93, 90, 74, 51, 96, 126, 126, 115, 88, 60, 126, 164, 175, 165, 140, 106, 69, 150, 207, 224, 224, 198, 165, 120, 78, 187, 255, 288, 292, 273, 237, 190, 138, 87, 216, 308, 350, 369, 352, 322, 270, 215, 152, 96, 260, 366, 429, 455, 450, 420, 371, 309, 240, 170, 105
OFFSET
3,1
LINKS
Terrel Trotter, Perimeter-Magic Polygons, Journal of Recreational Mathematics Vol. 7, No. 1, 1974, pp. 14-20 (see equations 6 and 8).
FORMULA
T(k, n) = k*(1 + k*(2n - 3) - (n mod 2)*(1 - (k mod 2)))/2.
T(n, n) = A059270(n-1).
EXAMPLE
The table begins:
k\n| 3 4 5 6 7 ...
---+------------------------
3 | 15 24 33 42 51 ...
4 | 24 42 56 74 88 ...
5 | 40 65 90 115 140 ...
6 | 54 93 126 165 198 ...
7 | 77 126 175 224 273 ...
...
MATHEMATICA
T[k_, n_]:=k(1+k(2n-3)-Mod[n, 2](1-Mod[k, 2]))/2; Table[T[k+3-n, n], {k, 3, 14}, {n, 3, k}]//Flatten
CROSSREFS
Cf. A005475 (n = 4), A022267 (n = 6), A059270, A179805 (k = 3), A343052 (minimum).
Sequence in context: A373675 A059144 A274339 * A114436 A114558 A035408
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Apr 03 2021
STATUS
approved