login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343053
Table read by ascending antidiagonals: T(k, n) is the maximum vertex sum in a perimeter-magic k-gon of order n.
1
15, 24, 24, 40, 42, 33, 54, 65, 56, 42, 77, 93, 90, 74, 51, 96, 126, 126, 115, 88, 60, 126, 164, 175, 165, 140, 106, 69, 150, 207, 224, 224, 198, 165, 120, 78, 187, 255, 288, 292, 273, 237, 190, 138, 87, 216, 308, 350, 369, 352, 322, 270, 215, 152, 96, 260, 366, 429, 455, 450, 420, 371, 309, 240, 170, 105
OFFSET
3,1
LINKS
Terrel Trotter, Perimeter-Magic Polygons, Journal of Recreational Mathematics Vol. 7, No. 1, 1974, pp. 14-20 (see equations 6 and 8).
FORMULA
T(k, n) = k*(1 + k*(2n - 3) - (n mod 2)*(1 - (k mod 2)))/2.
T(n, n) = A059270(n-1).
EXAMPLE
The table begins:
k\n| 3 4 5 6 7 ...
---+------------------------
3 | 15 24 33 42 51 ...
4 | 24 42 56 74 88 ...
5 | 40 65 90 115 140 ...
6 | 54 93 126 165 198 ...
7 | 77 126 175 224 273 ...
...
MATHEMATICA
T[k_, n_]:=k(1+k(2n-3)-Mod[n, 2](1-Mod[k, 2]))/2; Table[T[k+3-n, n], {k, 3, 14}, {n, 3, k}]//Flatten
CROSSREFS
Cf. A005475 (n = 4), A022267 (n = 6), A059270, A179805 (k = 3), A343052 (minimum).
Sequence in context: A373675 A059144 A274339 * A114436 A114558 A035408
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Apr 03 2021
STATUS
approved