login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343052
Table read by ascending antidiagonals: T(k, n) is the minimum vertex sum in a perimeter-magic k-gon of order n.
2
6, 12, 6, 15, 10, 6, 24, 15, 12, 6, 28, 21, 15, 10, 6, 40, 28, 24, 15, 12, 6, 45, 36, 28, 21, 15, 10, 6, 60, 45, 40, 28, 24, 15, 12, 6, 66, 55, 45, 36, 28, 21, 15, 10, 6, 84, 66, 60, 45, 40, 28, 24, 15, 12, 6, 91, 78, 66, 55, 45, 36, 28, 21, 15, 10, 6, 112, 91, 84, 66, 60, 45, 40, 28, 24, 15, 12, 6
OFFSET
3,1
LINKS
Terrel Trotter, Perimeter-Magic Polygons, Journal of Recreational Mathematics Vol. 7, No. 1, 1974, pp. 14-20 (see equations 5 and 7).
FORMULA
O.g.f.: x*(1 + x^2 + y + x*(2 + 3*y))/((1 - x)^3*(1 + x)^2*(1 - y^2)).
E.g.f.: x*((5 + 2*x)*cosh(x + y) - cosh(x - y) + 2*(2 + x)*sinh(x + y))/4.
T(k, n) = k*(1 + k + (n mod 2)*(1 - (k mod 2)))/2.
T(k, 3) = A265225(k-1) (conjectured).
EXAMPLE
The table begins:
k\n| 3 4 5 6 7 ...
---+--------------------
3 | 6 6 6 6 6 ...
4 | 12 10 12 10 12 ...
5 | 15 15 15 15 15 ...
6 | 24 21 24 21 24 ...
7 | 28 28 28 28 28 ...
...
MATHEMATICA
T[k_, n_]:=k(1+k+Mod[n, 2](1-Mod[k, 2]))/2; Table[T[k+3-n, n], {k, 3, 14}, {n, 3, k}]//Flatten
CROSSREFS
Cf. A000217 (n = 4), A010722 (k = 3), A010854 (k = 5), A010867 (k = 7), A265225, A343053 (maximum).
Sequence in context: A322214 A315775 A315776 * A050496 A262617 A303226
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Apr 03 2021
STATUS
approved