OFFSET
0,2
COMMENTS
Apart from the second term, the same as A122709. - R. J. Mathar, Jul 30 2010
For n > 1, a(n) is the maximum value of the sum of the vertices in a normal magic triangle of order n (see formula 10 in Trotter). - Stefano Spezia, Mar 03 2021
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Terrel Trotter, Normal Magic Triangles of Order n, Journal of Recreational Mathematics Vol. 5, No. 1, 1972, pp. 28-32.
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
(1 + 3*x + 6*x^2 + 15*x^3 + ...) = (1 + 3*x^2 + 3*x^3 + 3*x^4 + ...) * (1 + 3*x + 3*x^2 + 3*x^3 + 3*x^4 + ...).
a(0) = 1, a(1) = 3, a(2) = 6 and a(n) = 2*a(n-1) - a(n-2) for n > 3.
a(n) = a(n-1) + 9 for n > 2.
For n > 1, a(n) == 6 (mod 9).
From Colin Barker, Oct 28 2012: (Start)
a(n) = 9*n - 12 for n > 1.
G.f.: (2*x+1)*(3*x^2-x+1)/(x-1)^2. (End)
E.g.f.: 13 + 6*x + 3*exp(x)*(3x - 4). - Stefano Spezia, Mar 03 2021
EXAMPLE
a(4) = 24 = 9 + a(3) = 9 + 15.
a(4) = 24 = 2*a(3) - a(2) = 2*15 - 6.
MATHEMATICA
LinearRecurrence[{2, -1}, {1, 3, 6, 15}, 50] (* Harvey P. Dale, Sep 25 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jul 27 2010
STATUS
approved