login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179805
a(0) = 1, a(1) = 3, a(2) = 6 and a(n) = 2*a(n-1) - a(n-2) for n > 3.
6
1, 3, 6, 15, 24, 33, 42, 51, 60, 69, 78, 87, 96, 105, 114, 123, 132, 141, 150, 159, 168, 177, 186, 195, 204, 213, 222, 231, 240, 249, 258, 267, 276, 285, 294, 303, 312, 321, 330, 339, 348, 357, 366, 375, 384, 393, 402
OFFSET
0,2
COMMENTS
Apart from the second term, the same as A122709. - R. J. Mathar, Jul 30 2010
For n > 1, a(n) is the maximum value of the sum of the vertices in a normal magic triangle of order n (see formula 10 in Trotter). - Stefano Spezia, Mar 03 2021
LINKS
Terrel Trotter, Normal Magic Triangles of Order n, Journal of Recreational Mathematics Vol. 5, No. 1, 1972, pp. 28-32.
FORMULA
(1 + 3*x + 6*x^2 + 15*x^3 + ...) = (1 + 3*x^2 + 3*x^3 + 3*x^4 + ...) * (1 + 3*x + 3*x^2 + 3*x^3 + 3*x^4 + ...).
a(0) = 1, a(1) = 3, a(2) = 6 and a(n) = 2*a(n-1) - a(n-2) for n > 3.
a(n) = a(n-1) + 9 for n > 2.
For n > 1, a(n) == 6 (mod 9).
From Colin Barker, Oct 28 2012: (Start)
a(n) = 9*n - 12 for n > 1.
G.f.: (2*x+1)*(3*x^2-x+1)/(x-1)^2. (End)
E.g.f.: 13 + 6*x + 3*exp(x)*(3x - 4). - Stefano Spezia, Mar 03 2021
EXAMPLE
a(4) = 24 = 9 + a(3) = 9 + 15.
a(4) = 24 = 2*a(3) - a(2) = 2*15 - 6.
MATHEMATICA
LinearRecurrence[{2, -1}, {1, 3, 6, 15}, 50] (* Harvey P. Dale, Sep 25 2018 *)
CROSSREFS
Cf. A122709.
Sequence in context: A244164 A129602 A044888 * A006639 A242757 A166448
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jul 27 2010
STATUS
approved