login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table read by ascending antidiagonals: T(k, n) is the maximum vertex sum in a perimeter-magic k-gon of order n.
2

%I #5 Apr 04 2021 01:00:15

%S 15,24,24,40,42,33,54,65,56,42,77,93,90,74,51,96,126,126,115,88,60,

%T 126,164,175,165,140,106,69,150,207,224,224,198,165,120,78,187,255,

%U 288,292,273,237,190,138,87,216,308,350,369,352,322,270,215,152,96,260,366,429,455,450,420,371,309,240,170,105

%N Table read by ascending antidiagonals: T(k, n) is the maximum vertex sum in a perimeter-magic k-gon of order n.

%H Terrel Trotter, <a href="https://web.archive.org/web/20070106085340/http://www.trottermath.net/simpleops/pmp.html">Perimeter-Magic Polygons</a>, Journal of Recreational Mathematics Vol. 7, No. 1, 1974, pp. 14-20 (see equations 6 and 8).

%F T(k, n) = k*(1 + k*(2n - 3) - (n mod 2)*(1 - (k mod 2)))/2.

%F T(n, n) = A059270(n-1).

%e The table begins:

%e k\n| 3 4 5 6 7 ...

%e ---+------------------------

%e 3 | 15 24 33 42 51 ...

%e 4 | 24 42 56 74 88 ...

%e 5 | 40 65 90 115 140 ...

%e 6 | 54 93 126 165 198 ...

%e 7 | 77 126 175 224 273 ...

%e ...

%t T[k_,n_]:=k(1+k(2n-3)-Mod[n,2](1-Mod[k,2]))/2; Table[T[k+3-n,n],{k,3,14},{n,3,k}]//Flatten

%Y Cf. A005475 (n = 4), A022267 (n = 6), A059270, A179805 (k = 3), A343052 (minimum).

%K nonn,tabl

%O 3,1

%A _Stefano Spezia_, Apr 03 2021