login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342924
Composite numbers k such that A003415(sigma(k)) = k + p*A003415(k), for some prime p, where A003415 is the arithmetic derivative, and sigma is the sum of divisors of n.
5
6, 28, 120, 496, 672, 963, 1036, 5871, 8128, 10479, 164284, 264768, 523776, 2308203, 6511664, 33550336, 41240261, 75384301, 400902412, 459818240, 581013140, 1253768516, 1476304896, 2114464203, 8589869056
OFFSET
1,1
COMMENTS
Composite numbers k for which A342926(k) = p*A003415(k), for some prime p.
Corresponding prime p for the first 25 terms is: 2, 2, 3, 2, 3, 3, 3, 11, 2, 11, 2, 3, 3, 5, 2, 2, 101, 397, 2, 3, 5, 7, 3, 5, 2. - Antti Karttunen, Feb 25 2022
MATHEMATICA
Block[{f}, f[n_] := If[n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[n]]]; Select[Range[4, 10^6], And[CompositeQ[#], PrimeQ[(f[DivisorSigma[1, #]] - #)/f[#] ]] &]] (* Michael De Vlieger, Apr 08 2021 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A342925(n) = A003415(sigma(n));
isA342924(n) = if((n<2)||isprime(n), 0, my(q=(A342925(n)-n)/A003415(n)); ((1==denominator(q))&&isprime(q)));
CROSSREFS
Odd terms in this sequence form a subsequence of A347884.
Cf. A000396, A005820, A046060, A065997 (subsequences).
Cf. also A342922, A342923, A007691.
Sequence in context: A055715 A026031 A002694 * A007691 A348031 A260508
KEYWORD
nonn,more
AUTHOR
Antti Karttunen, Apr 08 2021
EXTENSIONS
Terms a(21) - a(25) from Antti Karttunen, Feb 25 2022
STATUS
approved