OFFSET
1,2
COMMENTS
To compute T(n, k):
- write the prime factors of n and of k in ascending order with multiplicities on two lines, right aligned,
- take the largest prime number in each column and multiply back,
- for example, for T(12, 14):
12 -> 2 2 3
14 -> 2 7
-----
2 2 7 -> 28 = T(12, 14)
This sequence is closely related to lunar addition (A087061):
- let n and k be two p-smooth numbers,
- let f be the function that associates to a p-smooth number, say m, the unique number whose (p+1)-base digits are prime, nondecreasing and whose product is m,
- let g be the inverse of f,
- then for any p-smooth numbers n and k, T(n, k) = g(f(n) "+" f(k)) where "+" denotes lunar addition in base p+1,
- see A342767 for the corresponding multiplication.
LINKS
FORMULA
EXAMPLE
Array T(n, k) begins:
n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14
---+--------------------------------------------------------
1| 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2| 2 2 3 4 5 6 7 8 9 10 11 12 13 14
3| 3 3 3 6 5 6 7 12 9 10 11 12 13 14
4| 4 4 6 4 10 6 14 8 9 10 22 12 26 14
5| 5 5 5 10 5 10 7 20 15 10 11 20 13 14
6| 6 6 6 6 10 6 14 12 9 10 22 12 26 14
7| 7 7 7 14 7 14 7 28 21 14 11 28 13 14
8| 8 8 12 8 20 12 28 8 18 20 44 12 52 28
9| 9 9 9 9 15 9 21 18 9 15 33 18 39 21
10| 10 10 10 10 10 10 14 20 15 10 22 20 26 14
11| 11 11 11 22 11 22 11 44 33 22 11 44 13 22
12| 12 12 12 12 20 12 28 12 18 20 44 12 52 28
13| 13 13 13 26 13 26 13 52 39 26 13 52 13 26
14| 14 14 14 14 14 14 14 28 21 14 22 28 26 14
PROG
(PARI) gpf(n) = if (n==1, 1, my (p=factor(n)[, 1]~); p[#p])
T(n, k) = if (n==1 || k==1, max(n, k), my (p=gpf(n), q=gpf(k)); max(p, q)*T(n/p, k/q))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Rémy Sigrist, Apr 02 2021
STATUS
approved