login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342765
Array T(n, k), n, k > 0, read by antidiagonals; T(n, k) = max(A006530(n), A006530(k)) * T(n/A006530(n), k/A006530(k)) with T(1, 1) = 1.
3
1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 5, 4, 3, 4, 5, 6, 5, 6, 6, 5, 6, 7, 6, 5, 4, 5, 6, 7, 8, 7, 6, 10, 10, 6, 7, 8, 9, 8, 7, 6, 5, 6, 7, 8, 9, 10, 9, 12, 14, 10, 10, 14, 12, 9, 10, 11, 10, 9, 8, 7, 6, 7, 8, 9, 10, 11, 12, 11, 10, 9, 20, 14, 14, 20, 9, 10, 11, 12
OFFSET
1,2
COMMENTS
To compute T(n, k):
- write the prime factors of n and of k in ascending order with multiplicities on two lines, right aligned,
- take the largest prime number in each column and multiply back,
- for example, for T(12, 14):
12 -> 2 2 3
14 -> 2 7
-----
2 2 7 -> 28 = T(12, 14)
This sequence is closely related to lunar addition (A087061):
- let n and k be two p-smooth numbers,
- let f be the function that associates to a p-smooth number, say m, the unique number whose (p+1)-base digits are prime, nondecreasing and whose product is m,
- let g be the inverse of f,
- then for any p-smooth numbers n and k, T(n, k) = g(f(n) "+" f(k)) where "+" denotes lunar addition in base p+1,
- see A342767 for the corresponding multiplication.
FORMULA
T(n, k) = T(k, n).
T(m, T(n, k)) = T(T(m, n), k).
T(n, 1) = n.
T(n, n) = n.
A001222(T(n, k)) = max(A001222(n), A001222(k)).
A006530(T(n, k)) = max(A006530(n), A006530(k)).
EXAMPLE
Array T(n, k) begins:
n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14
---+--------------------------------------------------------
1| 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2| 2 2 3 4 5 6 7 8 9 10 11 12 13 14
3| 3 3 3 6 5 6 7 12 9 10 11 12 13 14
4| 4 4 6 4 10 6 14 8 9 10 22 12 26 14
5| 5 5 5 10 5 10 7 20 15 10 11 20 13 14
6| 6 6 6 6 10 6 14 12 9 10 22 12 26 14
7| 7 7 7 14 7 14 7 28 21 14 11 28 13 14
8| 8 8 12 8 20 12 28 8 18 20 44 12 52 28
9| 9 9 9 9 15 9 21 18 9 15 33 18 39 21
10| 10 10 10 10 10 10 14 20 15 10 22 20 26 14
11| 11 11 11 22 11 22 11 44 33 22 11 44 13 22
12| 12 12 12 12 20 12 28 12 18 20 44 12 52 28
13| 13 13 13 26 13 26 13 52 39 26 13 52 13 26
14| 14 14 14 14 14 14 14 28 21 14 22 28 26 14
PROG
(PARI) gpf(n) = if (n==1, 1, my (p=factor(n)[, 1]~); p[#p])
T(n, k) = if (n==1 || k==1, max(n, k), my (p=gpf(n), q=gpf(k)); max(p, q)*T(n/p, k/q))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Rémy Sigrist, Apr 02 2021
STATUS
approved