login
A147952
a(0) = 0, a(1) = a(2) = 1, and for n >= 3, a(n) = a(a(n-2)) + r(n), where r(n) = a(a(floor(n/3))) when n == 0 or 1 (mod 3) and = a(n - a(floor(n/3))) when n == 2 (mod 3).
3
0, 1, 1, 2, 2, 3, 2, 3, 4, 3, 3, 5, 3, 4, 5, 4, 5, 7, 4, 4, 6, 4, 4, 8, 4, 6, 6, 4, 4, 8, 4, 6, 10, 5, 6, 7, 4, 5, 9, 5, 5, 8, 6, 7, 7, 5, 5, 10, 6, 6, 7, 5, 6, 8, 4, 6, 8, 4, 6, 8, 4, 6, 10, 4, 5, 8, 5, 6, 8, 6, 8, 6, 6, 4, 10, 4, 5, 8, 5, 6, 13, 4, 6, 8, 4, 6, 8, 6, 8, 6, 6, 4, 10, 4, 5, 8, 6, 7, 10, 6, 6
OFFSET
0,4
FORMULA
a(n) = a(a(n - 2)) + If[Mod[n, 3] == 0, a(a(n/3)), If[Mod[n, 3] == 1, a(a((n - 1)/3)), a(n - a((n - 2)/3))] for n >= 3 with a(0) = 0 and a(1) = a(2) = 1. [edited by Petros Hadjicostas, Apr 13 2020]
MATHEMATICA
f[0] = 0; f[1] = 1; f[2] = 1; f[n_] := f[n] = f[f[n - 2]] + If[Mod[n, 3] == 0, f[f[n/3]], If[Mod[n, 3] == 1, f[f[(n - 1)/3]], f[n - f[(n - 2)/3]]]]; Table[f[n], {n, 0, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Nov 17 2008
EXTENSIONS
Name edited by Petros Hadjicostas, Apr 13 2020
STATUS
approved