

A147952


a(0) = 0, a(1) = a(2) = 1, and for n >= 3, a(n) = a(a(n2)) + r(n), where r(n) = a(a(floor(n/3)) when n == 0 or 1 (mod 3) and = a(n  a(floor(n/3))) when n == 2 (mod 3).


3



0, 1, 1, 2, 2, 3, 2, 3, 4, 3, 3, 5, 3, 4, 5, 4, 5, 7, 4, 4, 6, 4, 4, 8, 4, 6, 6, 4, 4, 8, 4, 6, 10, 5, 6, 7, 4, 5, 9, 5, 5, 8, 6, 7, 7, 5, 5, 10, 6, 6, 7, 5, 6, 8, 4, 6, 8, 4, 6, 8, 4, 6, 10, 4, 5, 8, 5, 6, 8, 6, 8, 6, 6, 4, 10, 4, 5, 8, 5, 6, 13, 4, 6, 8, 4, 6, 8, 6, 8, 6, 6, 4, 10, 4, 5, 8, 6, 7, 10, 6, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


LINKS

Table of n, a(n) for n=0..100.


FORMULA

a(n) = a(a(n  2)) + If[Mod[n, 3] == 0, a(a(n/3)), If[Mod[n, 3] == 1, a(a((n  1)/3)), a(n  a((n  2)/3))] for n >= 3 with a(0) = 0 and a(1) = a(2) = 1. [edited by Petros Hadjicostas, Apr 13 2020]


MATHEMATICA

f[0] = 0; f[1] = 1; f[2] = 1; f[n_] := f[n] = f[f[n  2]] + If[Mod[n, 3] == 0, f[f[n/3]], If[Mod[n, 3] == 1, f[f[(n  1)/3]], f[n  f[(n  2)/3]]]]; Table[f[n], {n, 0, 100}]


CROSSREFS

Cf. A147665, A147953, A147981.
Sequence in context: A342765 A244580 A131830 * A091316 A321862 A071825
Adjacent sequences: A147949 A147950 A147951 * A147953 A147954 A147955


KEYWORD

nonn


AUTHOR

Roger L. Bagula, Nov 17 2008


EXTENSIONS

Name edited by Petros Hadjicostas, Apr 13 2020


STATUS

approved



