OFFSET
3,1
LINKS
Terrel Trotter, Perimeter-Magic Polygons, Journal of Recreational Mathematics Vol. 7, No. 1, 1974, pp. 14-20 (see equations 10 and 12).
FORMULA
G.f.: (x^2*(-3*y^3 + 2*y - 1) - x*(2*y^3 + y^2 - 2*y + 1) + (y - 1)*y)/((x - 1)^2*(x + 1)*(y - 1)^3*(y + 1)).
T(k, n) = (n^2/2 - n + 1)*k + n/2 if n is even or both n and k are odd.
T(k, n) = (n^2/2 - n + 1)*k + (n + 1)/2) if n is odd and k is even.
T(k, n) = ((1 - (k mod 2))*(n mod 2) + k*(n^2 - 2*n + 2) + n)/2.
EXAMPLE
The array begins:
k\n| 3 4 5 6 7 ...
---+------------------------
3 | 9 17 28 42 59 ...
4 | 12 22 37 55 78 ...
5 | 14 27 45 68 96 ...
6 | 17 32 54 81 115 ...
7 | 19 37 62 94 133 ...
...
MATHEMATICA
T[k_, n_]:= ((1-Mod[k, 2])Mod[n, 2]+k*(n^2-2*n+2)+n)/2; Table[T[k+3-n, n], {k, 3, 13}, {n, 3, k}]//Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Mar 21 2021
STATUS
approved