login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342757
Array read by ascending antidiagonals: T(k, n) is the minimum value of the magic constant in a perimeter-magic k-gon of order n.
4
9, 12, 17, 14, 22, 28, 17, 27, 37, 42, 19, 32, 45, 55, 59, 22, 37, 54, 68, 78, 79, 24, 42, 62, 81, 96, 104, 102, 27, 47, 71, 94, 115, 129, 135, 128, 29, 52, 79, 107, 133, 154, 167, 169, 157, 32, 57, 88, 120, 152, 179, 200, 210, 208, 189, 34, 62, 96, 133, 170, 204, 232, 251, 258, 250, 224
OFFSET
3,1
LINKS
Terrel Trotter, Perimeter-Magic Polygons, Journal of Recreational Mathematics Vol. 7, No. 1, 1974, pp. 14-20 (see equations 10 and 12).
FORMULA
G.f.: (x^2*(-3*y^3 + 2*y - 1) - x*(2*y^3 + y^2 - 2*y + 1) + (y - 1)*y)/((x - 1)^2*(x + 1)*(y - 1)^3*(y + 1)).
T(k, n) = (n^2/2 - n + 1)*k + n/2 if n is even or both n and k are odd.
T(k, n) = (n^2/2 - n + 1)*k + (n + 1)/2 if n is odd and k is even.
T(k, n) = ((1 - (k mod 2))*(n mod 2) + k*(n^2 - 2*n + 2) + n)/2.
EXAMPLE
The array begins:
k\n| 3 4 5 6 7 ...
---+------------------------
3 | 9 17 28 42 59 ...
4 | 12 22 37 55 78 ...
5 | 14 27 45 68 96 ...
6 | 17 32 54 81 115 ...
7 | 19 37 62 94 133 ...
...
MATHEMATICA
T[k_, n_]:= ((1-Mod[k, 2])Mod[n, 2]+k*(n^2-2*n+2)+n)/2; Table[T[k+3-n, n], {k, 3, 13}, {n, 3, k}]//Flatten
CROSSREFS
Cf. A016873 (n = 4), A285009 (k = 3), A342719, A342758 (maximum).
Sequence in context: A076674 A176062 A027571 * A154631 A199593 A356842
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Mar 21 2021
STATUS
approved