%I #7 Mar 23 2021 16:18:31
%S 9,12,17,14,22,28,17,27,37,42,19,32,45,55,59,22,37,54,68,78,79,24,42,
%T 62,81,96,104,102,27,47,71,94,115,129,135,128,29,52,79,107,133,154,
%U 167,169,157,32,57,88,120,152,179,200,210,208,189,34,62,96,133,170,204,232,251,258,250,224
%N Array read by ascending antidiagonals: T(k, n) is the minimum value of the magic constant in a perimeter-magic k-gon of order n.
%H Terrel Trotter, <a href="https://web.archive.org/web/20070106085340/http://www.trottermath.net/simpleops/pmp.html">Perimeter-Magic Polygons</a>, Journal of Recreational Mathematics Vol. 7, No. 1, 1974, pp. 14-20 (see equations 10 and 12).
%F G.f.: (x^2*(-3*y^3 + 2*y - 1) - x*(2*y^3 + y^2 - 2*y + 1) + (y - 1)*y)/((x - 1)^2*(x + 1)*(y - 1)^3*(y + 1)).
%F T(k, n) = (n^2/2 - n + 1)*k + n/2 if n is even or both n and k are odd.
%F T(k, n) = (n^2/2 - n + 1)*k + (n + 1)/2) if n is odd and k is even.
%F T(k, n) = ((1 - (k mod 2))*(n mod 2) + k*(n^2 - 2*n + 2) + n)/2.
%e The array begins:
%e k\n| 3 4 5 6 7 ...
%e ---+------------------------
%e 3 | 9 17 28 42 59 ...
%e 4 | 12 22 37 55 78 ...
%e 5 | 14 27 45 68 96 ...
%e 6 | 17 32 54 81 115 ...
%e 7 | 19 37 62 94 133 ...
%e ...
%t T[k_,n_]:= ((1-Mod[k,2])Mod[n,2]+k*(n^2-2*n+2)+n)/2; Table[T[k+3-n,n],{k,3,13},{n,3,k}]//Flatten
%Y Cf. A016873 (n = 4), A285009 (k = 3), A342719, A342758 (maximum).
%K nonn,tabl
%O 3,1
%A _Stefano Spezia_, Mar 21 2021