This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A285009 Subset sums (see Comments). 1
 9, 17, 28, 42, 59, 79, 102, 128, 157, 189, 224, 262, 303, 347, 394, 444, 497, 553, 612, 674, 739, 807, 878, 952, 1029, 1109, 1192, 1278, 1367, 1459, 1554, 1652, 1753, 1857, 1964, 2074, 2187, 2303, 2422, 2544, 2669, 2797, 2928, 3062, 3199, 3339, 3482, 3628, 3777, 3929, 4084 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 COMMENTS For n > 2, take the set [3*(n-1)] and form three subsets all of which: a) have cardinality of n, b) have the same sum of elements, and c) share one element with the other subset and another element with the third subset. a(n) is the sum of the elements of each subset. REFERENCES a(4) is mentioned in: Gary Gruber, "The World's 200 Hardest Brain Teasers", Sourcebooks, 2010, p. 55. LINKS Colin Barker, Table of n, a(n) for n = 3..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), for n > 5. a(n) = (8 + (n-2)*(3*n+1))/2, for n > 2. G.f.: x^3*(9 - 10*x + 4*x^2) / (1 - x)^3. - Colin Barker, Apr 08 2017 E.g.f.: (1/2)*exp(x)*(3*x^2 - 2*x + 6) - 2*x*(x + 1) - 3. - Indranil Ghosh, Apr 08 2017; corrected by Ilya Gutkovskiy, Apr 10 2017 EXAMPLE For n = 3, the set is S = {1,2,3,4,5,6} and the subsets are S1 = {1,2,6}, S2 = {1,3,5} and S3 = {2,3,4}. Therefore, a(3) = 9. MATHEMATICA Table[(8+(n-2)*(3 *n+1))/2, {n, 3, 53}] Drop[CoefficientList[Series[x^3*(9 - 10*x + 4*x^2) / (1 - x)^3 , {x, 0, 60}], x], 3] (* Indranil Ghosh, Apr 08 2017 *) PROG (PARI) Vec(x^3*(9 - 10*x + 4*x^2) / (1 - x)^3 + O(x^60)) \\ Colin Barker, Apr 08 2017 CROSSREFS Sequence in context: A235361 A109333 A081030 * A228260 A147459 A188559 Adjacent sequences:  A285006 A285007 A285008 * A285010 A285011 A285012 KEYWORD easy,nonn AUTHOR Ivan N. Ianakiev, Apr 07 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 07:08 EDT 2019. Contains 327253 sequences. (Running on oeis4.)