login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342758
Array read by ascending antidiagonals: T(k, n) is the maximum value of the magic constant in a perimeter-magic k-gon of order n.
5
12, 15, 23, 19, 30, 37, 22, 37, 48, 54, 26, 44, 60, 71, 74, 29, 51, 71, 88, 97, 97, 33, 58, 83, 105, 121, 128, 123, 36, 65, 94, 122, 144, 159, 162, 152, 40, 72, 106, 139, 168, 190, 202, 201, 184, 43, 79, 117, 156, 191, 221, 241, 250, 243, 219, 47, 86, 129, 173, 215, 252, 281, 299, 303, 290, 257
OFFSET
3,1
LINKS
Terrel Trotter, Perimeter-Magic Polygons, Journal of Recreational Mathematics Vol. 7, No. 1, 1974, pp. 14-20 (see equations 11 and 13).
FORMULA
G.f.: (- x^2*(2*y^2 + y - 1) - x*(y^2 + 2*y - 1) + (y - 1)*y^2)/((x - 1)^2*(x + 1)*(y - 1)^3*(y + 1)).
T(k, n) = (n^2/2 - 1)*k + n/2 if n is even or both n and k are odd.
T(k, n) = (n^2/2 - 1)*k + (n - 1)/2 if n is odd and k is even.
T(k, n) = (n + k*(n^2 - 2) + ((k mod 2) - 1)*(n mod 2))/2.
EXAMPLE
The array begins:
k\n| 3 4 5 6 7 ...
---+---------------------
3 | 12 23 37 54 74 ...
4 | 15 30 48 71 97 ...
5 | 19 37 60 88 121 ...
6 | 22 44 71 105 144 ...
7 | 26 51 83 122 168 ...
...
MATHEMATICA
T[k_, n_]:= (n+k(n^2-2)+(Mod[k, 2]-1)Mod[n, 2])/2; Table[T[k+3-n, n], {k, 3, 13}, {n, 3, k}]//Flatten
CROSSREFS
Cf. A017005 (n = 4), A135503 (diagonal), A341740 (k = 3), A342719, A342757 (minimum).
Sequence in context: A259040 A158190 A122040 * A274550 A253235 A050480
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Mar 21 2021
STATUS
approved