login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A342758 Array read by ascending antidiagonals: T(k, n) is the maximum value of the magic constant in a perimeter-magic k-gon of order n. 5
12, 15, 23, 19, 30, 37, 22, 37, 48, 54, 26, 44, 60, 71, 74, 29, 51, 71, 88, 97, 97, 33, 58, 83, 105, 121, 128, 123, 36, 65, 94, 122, 144, 159, 162, 152, 40, 72, 106, 139, 168, 190, 202, 201, 184, 43, 79, 117, 156, 191, 221, 241, 250, 243, 219, 47, 86, 129, 173, 215, 252, 281, 299, 303, 290, 257 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

3,1

LINKS

Table of n, a(n) for n=3..68.

Terrel Trotter, Perimeter-Magic Polygons, Journal of Recreational Mathematics Vol. 7, No. 1, 1974, pp. 14-20 (see equations 11 and 13).

FORMULA

G.f.: (- x^2*(2*y^2 + y - 1) - x*(y^2 + 2*y - 1) + (y - 1)*y^2)/((x - 1)^2*(x + 1)*(y - 1)^3*(y + 1)).

T(k, n) = (n^2/2 - 1)*k + n/2 if n is even or both n and k are odd.

T(k, n) = (n^2/2 - 1)*k + (n - 1)/2 if n is odd and k is even.

T(k, n) = (n + k*(n^2 - 2) + ((k mod 2) - 1)*(n mod 2))/2.

EXAMPLE

The array begins:

k\n|  3   4   5    6    7 ...

---+---------------------

3  | 12  23  37   54   74 ...

4  | 15  30  48   71   97 ...

5  | 19  37  60   88  121 ...

6  | 22  44  71  105  144 ...

7  | 26  51  83  122  168 ...

...

MATHEMATICA

T[k_, n_]:= (n+k(n^2-2)+(Mod[k, 2]-1)Mod[n, 2])/2; Table[T[k+3-n, n], {k, 3, 13}, {n, 3, k}]//Flatten

CROSSREFS

Cf. A017005 (n = 4), A135503 (diagonal), A341740 (k = 3), A342719, A342757 (minimum).

Sequence in context: A259040 A158190 A122040 * A274550 A253235 A050480

Adjacent sequences:  A342755 A342756 A342757 * A342759 A342760 A342761

KEYWORD

nonn,tabl

AUTHOR

Stefano Spezia, Mar 21 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 04:10 EDT 2021. Contains 347673 sequences. (Running on oeis4.)