login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A342621
Sum of the partition number of the prime factors of n with multiplicity.
1
0, 2, 3, 4, 7, 5, 15, 6, 6, 9, 56, 7, 101, 17, 10, 8, 297, 8, 490, 11, 18, 58, 1255, 9, 14, 103, 9, 19, 4565, 12, 6842, 10, 59, 299, 22, 10, 21637, 492, 104, 13, 44583, 20, 63261, 60, 13, 1257, 124754, 11, 30, 16, 300, 105, 329931, 11, 63, 21, 493, 4567, 831820
OFFSET
1,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 3000 terms from Eric Desbiaux)
FORMULA
a(A003586(n)) - A001414(A003586(n)) = 0.
a(A006899(n)) * A008480(A006899(n)) - A001414(A006899(n)) = 0.
a(n) = Sum_{k=1..A001222(n)} A000041(A027746(n,k)). - Alois P. Heinz, Apr 09 2021
EXAMPLE
For n = 408 = 2^3*3*17, a(408) = 3 * A000041(2) + A000041(3) + A000041(17) = 3*2 + 3 + 297 = 306.
MAPLE
a:= n-> add(combinat[numbpart](i[1])*i[2], i=ifactors(n)[2]):
seq(a(n), n=1..70); # Alois P. Heinz, Mar 17 2021
MATHEMATICA
{0}~Join~Array[Total@ Map[#2 PartitionsP[#1] & @@ # &, FactorInteger[#]] &, 58, 2] (* Michael De Vlieger, Mar 17 2021 *)
PROG
(Sage)
def a(n):
return sum([Partitions(primefactor).cardinality() for (primefactor, exponent) in factor(n) for _ in range(exponent)])
[a(n) for n in (1..100)]
(PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, f[k, 2]*numbpart(f[k, 1])); \\ Michel Marcus, Mar 17 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric Desbiaux, Mar 16 2021
STATUS
approved