login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342619
a(n) = Sum_{d|n} phi(n/d)^(n-d+1).
2
1, 2, 9, 18, 1025, 98, 279937, 65666, 10077825, 1310722, 100000000001, 16780802, 106993205379073, 91424858114, 35184439199745, 281476050460674, 295147905179352825857, 118486616186882, 708235345355337676357633, 1152921796664688642, 46005120518729441509377, 11000000000000000000002
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=1..n} phi(n/gcd(k,n))^(n - gcd(k,n)).
G.f.: Sum_{k>=1} (phi(k) * x)^k/(1 - phi(k)^(k-1) * x^k).
If p is prime, a(p) = 1 + (p-1)^p.
MATHEMATICA
a[n_] := DivisorSum[n, EulerPhi[n/#]^(n - # + 1) &]; Array[a, 20] (* Amiram Eldar, Mar 17 2021 *)
PROG
(PARI) a(n) = sumdiv(n, d, eulerphi(n/d)^(n-d+1));
(PARI) a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(n-gcd(k, n)));
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (eulerphi(k)*x)^k/(1-eulerphi(k)^(k-1)*x^k)))
CROSSREFS
Sequence in context: A297470 A075537 A342473 * A342471 A180852 A075340
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 16 2021
STATUS
approved