login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297470
Number of maximal matchings in the n-barbell graph.
1
1, 2, 9, 18, 225, 450, 11025, 22050, 893025, 1786050, 108056025, 216112050, 18261468225, 36522936450, 4108830350625, 8217660701250, 1187451971330625, 2374903942661250, 428670161650355625, 857340323300711250, 189043541287806830625, 378087082575613661250
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Barbell Graph
Eric Weisstein's World of Mathematics, Matching
Eric Weisstein's World of Mathematics, Maximal Independent Edge Set
FORMULA
a(2n) = 2*(2*n-1)!!^2, a(2n-1) = (2*n-1)!!^2. - Andrew Howroyd, Dec 30 2017
D-finite with recurrence: (n-3)*(n+1)*a(n) + (4*n-2)*a(n-1) - (n+2)*(n-2)*(n-1)^2*a(n-2) = 0. - Georg Fischer, Nov 25 2022
MATHEMATICA
Table[2^(n + 1) ((n - 1 + Mod[n, 2])/2)!^2/Pi, {n, 20}]
Table[2^(n + 1) ((2 Ceiling[n/2] - 1)/2)!^2/Pi, {n, 20}]
Table[If[Mod[n, 2] == 0, 2 (n - 1)!!^2, n!!^2], {n, 20}]
a[ n_] := If[n<0, 0, With[{t = Ceiling[n/2]}, (n+2-2*t)*((2*t)!/(2^t*t!))^2]]; (* Michael Somos, May 27 2023 *)
PROG
(PARI) \\ here b(n)=A001147(n)=(2*n-1)!!
b(n)={(2*n)!/(2^n*n!)}
a(n)=if(n%2, b((n+1)/2)^2, 2*b(n/2)^2); \\ Andrew Howroyd, Dec 30 2017
(PARI) {a(n) = if(n<1, 0, my(t = (n+1)\2); (n+2-2*t)*((2*t)!/(2^t*t!))^2)}; /* Michael Somos, May 27 2023 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Dec 30 2017
EXTENSIONS
a(1)-a(2) and terms a(21) and beyond from Andrew Howroyd, Dec 30 2017
STATUS
approved