login
A342612
a(n) = Sum_{d|n} phi(n/d)^(n-d).
4
1, 2, 5, 10, 257, 50, 46657, 16450, 1679681, 327682, 10000000001, 4196098, 8916100448257, 15237476354, 4398063289345, 35184640528386, 18446744073709551617, 19747769389058, 39346408075296537575425
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=1..n} phi(n/gcd(k,n))^(n - gcd(k,n) - 1).
G.f.: Sum_{k>=1} phi(k)^(k-1) * x^k/(1 - phi(k)^(k-1) * x^k).
If p is prime, a(p) = 1 + (p-1)^(p-1).
MATHEMATICA
a[n_] := DivisorSum[n, EulerPhi[n/#]^(n - #) &]; Array[a, 20] (* Amiram Eldar, Mar 17 2021 *)
PROG
(PARI) a(n) = sumdiv(n, d, eulerphi(n/d)^(n-d));
(PARI) a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(n-gcd(k, n)-1));
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)^(k-1)*x^k/(1-eulerphi(k)^(k-1)*x^k)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 16 2021
STATUS
approved