login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342228
Total sum of parts which are squares in all partitions of n.
1
0, 1, 2, 4, 11, 16, 27, 42, 69, 108, 158, 229, 334, 469, 656, 903, 1255, 1685, 2283, 3032, 4033, 5290, 6936, 8986, 11650, 14969, 19172, 24402, 30998, 39110, 49260, 61712, 77155, 96000, 119209, 147394, 181958, 223713, 274533, 335792, 409980, 498981, 606273, 734572
OFFSET
0,3
FORMULA
G.f.: Sum_{k>=1} k^2*x^(k^2)/(1 - x^(k^2)) / Product_{j>=1} (1 - x^j).
a(n) = Sum_{k=1..n} A035316(k) * A000041(n-k).
EXAMPLE
For n = 4 we have:
---------------------------------
Partitions Sum of parts
. which are squares
---------------------------------
4 ................... 4
3 + 1 ............... 1
2 + 2 ............... 0
2 + 1 + 1 ........... 2
1 + 1 + 1 + 1 ....... 4
---------------------------------
Total .............. 11
So a(4) = 11.
MATHEMATICA
nmax = 43; CoefficientList[Series[Sum[k^2 x^(k^2)/(1 - x^(k^2)), {k, 1, Floor[nmax^(1/2)] + 1}]/Product[(1 - x^j), {j, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[DivisorSum[k, # &, IntegerQ[#^(1/2)] &] PartitionsP[n - k], {k, 1, n}], {n, 0, 43}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 06 2021
STATUS
approved