login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total sum of parts which are squares in all partitions of n.
1

%I #5 Mar 07 2021 03:55:55

%S 0,1,2,4,11,16,27,42,69,108,158,229,334,469,656,903,1255,1685,2283,

%T 3032,4033,5290,6936,8986,11650,14969,19172,24402,30998,39110,49260,

%U 61712,77155,96000,119209,147394,181958,223713,274533,335792,409980,498981,606273,734572

%N Total sum of parts which are squares in all partitions of n.

%F G.f.: Sum_{k>=1} k^2*x^(k^2)/(1 - x^(k^2)) / Product_{j>=1} (1 - x^j).

%F a(n) = Sum_{k=1..n} A035316(k) * A000041(n-k).

%e For n = 4 we have:

%e ---------------------------------

%e Partitions Sum of parts

%e . which are squares

%e ---------------------------------

%e 4 ................... 4

%e 3 + 1 ............... 1

%e 2 + 2 ............... 0

%e 2 + 1 + 1 ........... 2

%e 1 + 1 + 1 + 1 ....... 4

%e ---------------------------------

%e Total .............. 11

%e So a(4) = 11.

%t nmax = 43; CoefficientList[Series[Sum[k^2 x^(k^2)/(1 - x^(k^2)), {k, 1, Floor[nmax^(1/2)] + 1}]/Product[(1 - x^j), {j, 1, nmax}], {x, 0, nmax}], x]

%t Table[Sum[DivisorSum[k, # &, IntegerQ[#^(1/2)] &] PartitionsP[n - k], {k, 1, n}], {n, 0, 43}]

%Y Cf. A000041, A000290, A035316, A066186, A073336, A342229.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Mar 06 2021