The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A341211 Smallest prime p such that (p^(2^n) + 1)/2 is prime. 4
 3, 3, 3, 13, 3, 3, 3, 113, 331, 3631, 827, 3109, 4253, 7487, 71 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Expressions of the form m^j + 1 can be factored (e.g., m^3 + 1 = (m + 1)*(m^2 - m + 1)) for any positive integer j except when j is a power of 2, so (p^j + 1)/2 for prime p cannot be prime unless j is a power of 2. a(12) <= 4253, a(13) <= 7487, a(14) <= 71. - Daniel Suteu, Feb 07 2021 a(13) > 2500 and a(14) = 71. - Jinyuan Wang, Feb 07 2021 LINKS Dario Alpern, Integer factorization calculator EXAMPLE No term is smaller than 3 (since 2 is the only smaller prime, and (2^(2^n) + 1)/2 is not an integer). (3^(2^0) + 1)/2 = (3^1 + 1)/2 = (3 + 1)/2 = 4/2 = 2 is prime, so a(0)=3. (3^(2^1) + 1)/2 = (3^2 + 1)/2 = 5 is prime, so a(1)=3. (3^(2^2) + 1)/2 = (3^4 + 1)/2 = 41 is prime, so a(2)=3. (3^(2^3) + 1)/2 = (3^8 + 1)/2 = 3281 = 17*193 is not prime, nor is (p^8 + 1)/2 for any other prime < 13, but (13^8 + 1)/2 = 407865361 is prime, so a(3)=13. PROG (PARI) a(n) = my(p=3); while (!isprime((p^(2^n) + 1)/2), p=nextprime(p+1)); p; \\ Michel Marcus, Feb 07 2021 (Alpertron) x=3; x=N(x); NOT IsPrime((x^8192+1)/2); N(x) # Martin Ehrenstein, Feb 08 2021 (Python) from sympy import isprime, nextprime def a(n):   p, pow2 = 3, 2**n   while True:     if isprime((p**pow2 + 1)//2): return p     p = nextprime(p) print([a(n) for n in range(9)]) # Michael S. Branicky, Mar 03 2021 CROSSREFS Cf. A005383, A048161, A176116, A340480. Cf. A093625 and A171381 (both for when p=3). Sequence in context: A024947 A291407 A147823 * A335518 A269347 A183554 Adjacent sequences:  A341208 A341209 A341210 * A341212 A341213 A341214 KEYWORD nonn,hard,more AUTHOR Jon E. Schoenfield, Feb 06 2021 EXTENSIONS a(11) from Daniel Suteu, Feb 07 2021 a(12) from Jinyuan Wang, Feb 07 2021 a(13)-a(14), using Dario Alpern's integer factorization calculator and prior bounds, from Martin Ehrenstein, Feb 08 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 14:19 EDT 2022. Contains 353746 sequences. (Running on oeis4.)