login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176116
Primes p such that p^4+1 = 2q where q is prime.
11
3, 5, 7, 11, 13, 17, 23, 29, 61, 71, 73, 103, 113, 199, 251, 313, 317, 337, 353, 419, 431, 449, 463, 479, 487, 503, 523, 607, 613, 643, 677, 701, 719, 761, 769, 811, 821, 829, 857, 883, 919, 997, 1013, 1019, 1049, 1087, 1123, 1163, 1259, 1327, 1381, 1483, 1493
OFFSET
1,1
LINKS
EXAMPLE
3^4+1 = 2*41; 5^4+1 = 2*313; 7^4+1 = 2*1201; 11^4+1 = 2*7321.
MATHEMATICA
Select[Prime[Range[250]], PrimeQ[(#^4+1)/2]&] (* Harvey P. Dale, Jul 20 2012 *)
PROG
(PARI) lista(nn) = forprime(p=3, nn, if (isprime((p^4+1)/2), print1(p, ", ")); ); \\ Michel Marcus, Oct 03 2016
CROSSREFS
Subsequence of A096169.
Cf. A277201 (resulting primes).
Sequence in context: A074781 A147545 A083668 * A063908 A154868 A274987
KEYWORD
easy,nonn
AUTHOR
Kevin Batista (kevin762401(AT)yahoo.com), Apr 08 2010
EXTENSIONS
Edited by Ray Chandler, Apr 10 2010
STATUS
approved