login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176113
Determinant of n X n matrix whose (i,j)-th element is (i+j)^(n-1)
2
1, -1, -8, 1296, 7962624, -2985984000000, -100306130042880000000, 416336312719673760153600000000, 281633758444745849464726940024832000000000
OFFSET
1,3
COMMENTS
a(n) = A057077(n)*A091868(n-1), signed variant of A091868.
Concerning the general case det((u(i) + v(j))^(n-1) for 1<=i,j<=n and u(1), ...,u(n), v(1), ..., v(n) integers, the reference give the proof that det((u(i) + v(j))^(n-1) = (1/x) *(((n-1)!)^n)*y*z with the following results :
x = 1! * 2!*...(n-1)! ;
y = (u(1) - u(2))*((u(1) - u(3))*....*(u(n-1) - u(n)) ;
z = (v(n) - v(n-1))*((v(n) - v(n-2))*....*(v(2) - v(1)).
If the (i,j)-th element is (i+j)^(n-1), then u(i) = i and v(j) = n+1-j. Finally, det(n X n) = ((-1)^p)* (n!)^(n+1) with n = 2p + 1 or n=2p.
REFERENCES
J. M. Monier, Algebre & geometrie, Dunod (1996), p.216.
FORMULA
a(n) = (-1)^floor(n/2)* ((n-1)!)^n.
EXAMPLE
a(3) = determinant(M_3) = -8 where M_3 is the matrix
[4 9 16]
[9 16 25]
[16 25 36]
MATHEMATICA
a[n_] = ((-1)^((n - Mod[n, 2])/2))*((n - 1)!)^n; Table[a[n], {n, 9}] (* from Jean-François Alcover, Aug 31 2011 *)
CROSSREFS
Cf. A091868.
Sequence in context: A162139 A095821 A340562 * A091868 A247732 A162090
KEYWORD
sign
AUTHOR
Michel Lagneau, Apr 08 2010
STATUS
approved