The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A340480 Primes p such that (p^8 + 1)/2 is prime. 9
 13, 43, 47, 53, 239, 373, 409, 433, 491, 557, 577, 859, 1021, 1103, 1307, 1531, 1699, 1753, 1777, 1871, 2053, 2083, 2297, 2467, 2503, 2593, 2797, 2957, 3251, 3307, 3323, 3511, 3613, 4099, 4523, 4637, 4951, 4999, 5591, 5657, 5693, 5801, 5827, 5849, 6043, 6163 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Expressions of the form m^j + 1 can be factored (e.g., m^3 + 1 = (m + 1)*(m^2 - m + 1)) for any positive integer j except when j is a power of 2, so (p^j + 1)/2 for prime p cannot be prime unless j is a power of 2. A005383, A048161, A176116, and this sequence list primes of the form (p^j + 1)/2 for j=2^0=1, j=2^1=2, j=2^2=4, and j=2^3=8, respectively. (p^8 + 1)/2 is divisible by 17 when m mod 34 is 3, 5, 7, 11, 23, 27, 29, or 31. LINKS Jon E. Schoenfield, Table of n, a(n) for n = 1..10000 EXAMPLE (3^8 + 1)/2 = 3281 = 17*193, so 3 is not a term. (13^8 + 1)/2 = 407865361 is prime, so 13 is a term. (17^8 + 1)/2 = 3487878721 = 18913 * 184417, so 17 is not a term. MATHEMATICA Prime[Position[Table[(Prime[p]^8 + 1)/2, {p, 1, 803}], _Integer?PrimeQ]] // Flatten (* Robert P. P. McKone, Jan 31 2021 *) PROG (PARI) isok(p) = isprime(p) && (p>2) && isprime((p^8 + 1)/2); \\ Michel Marcus, Feb 01 2021 CROSSREFS Primes p such that (p^(2^k) + 1)/2 is prime: A005383 (k=0), A048161 (k=1), A176116 (k=2), (this sequence) (k=3). Sequence in context: A259427 A118857 A118529 * A129811 A108545 A136191 Adjacent sequences: A340477 A340478 A340479 * A340481 A340482 A340483 KEYWORD nonn AUTHOR Jon E. Schoenfield, Jan 31 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 20:45 EDT 2024. Contains 372758 sequences. (Running on oeis4.)