login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340973
Generating function Sum_{n >= 0} a(n)*x^n = 1/sqrt((1-x)*(1-13*x)).
2
1, 7, 67, 721, 8179, 95557, 1137709, 13725439, 167204947, 2052215893, 25338173497, 314356676179, 3915672171229, 48938691421627, 613404577267843, 7707619156442401, 97058716523798227, 1224551690144551237
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} 3^k*binomial(n,k)*binomial(2*k,k).
a(n) = [x^n] (1+7*x+9*x^2)^n.
n * a(n) = 7 * (2*n-1) * a(n-1) - 13 * (n-1) * a(n-2) for n > 1.
E.g.f.: exp(7*x) * BesselI(0,6*x). - Ilya Gutkovskiy, Feb 01 2021
a(n) ~ 13^(n + 1/2) / (2 * sqrt(3*Pi*n)). - Vaclav Kotesovec, Nov 13 2021
MATHEMATICA
a[n_] := Sum[3^k * Binomial[n, k] * Binomial[2*k, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Feb 01 2021 *)
nxt[{n_, a_, b_}]:={n+1, b, (7*b(2n+1)-13*n*a)/(n+1)}; Join[{1}, NestList[nxt, {2, 7, 67}, 20] [[All, 2]]] (* Harvey P. Dale, Apr 27 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(1/sqrt((1-x)*(1-13*x)))
(PARI) {a(n) = sum(k=0, n, 3^k*binomial(n, k)*binomial(2*k, k))}
(PARI) {a(n) = polcoef((1+7*x+9*x^2)^n, n)}
CROSSREFS
Column k=3 of A340970.
Sequence in context: A073552 A036948 A020469 * A199756 A038386 A371398
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 01 2021
STATUS
approved