login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340972
a(n) = Sum_{k=0..n} (-n)^k * binomial(n,k) * binomial(2*k,k).
2
1, -1, 17, -395, 13345, -592299, 32630401, -2148740061, 164682639745, -14401797806195, 1415344434226801, -154426458074411313, 18523291145011712929, -2422743610992855309925, 343167234011405980982625
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] 1/sqrt((1-x)*(1+(4*n-1)*x)).
a(n) = [x^n] (1-(2*n-1)*x+(n*x)^2)^n.
a(n) = n! * [x^n] BesselI(0,2*n*x) / exp((2*n-1)*x). - Ilya Gutkovskiy, Feb 01 2021
a(n) ~ (-1)^n * exp(-1/4) * 4^n * n^(n - 1/2) / sqrt(Pi). - Vaclav Kotesovec, Nov 13 2021
MATHEMATICA
a[0] = 1; a[n_] := Sum[(-n)^k * Binomial[n, k] * Binomial[2*k, k], {k, 0, n}]; Array[a, 15, 0] (* Amiram Eldar, Feb 01 2021 *)
PROG
(PARI) {a(n) = sum(k=0, n, (-n)^k*binomial(n, k)*binomial(2*k, k))}
(PARI) {a(n) = polcoef(1/sqrt((1-x)*(1+(4*n-1)*x)+x*O(x^n)), n)}
(PARI) {a(n) = polcoef((1-(2*n-1)*x+(n*x)^2)^n, n)}
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 01 2021
STATUS
approved