login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Generating function Sum_{n >= 0} a(n)*x^n = 1/sqrt((1-x)*(1-13*x)).
2

%I #25 Apr 27 2022 16:29:09

%S 1,7,67,721,8179,95557,1137709,13725439,167204947,2052215893,

%T 25338173497,314356676179,3915672171229,48938691421627,

%U 613404577267843,7707619156442401,97058716523798227,1224551690144551237

%N Generating function Sum_{n >= 0} a(n)*x^n = 1/sqrt((1-x)*(1-13*x)).

%H Seiichi Manyama, <a href="/A340973/b340973.txt">Table of n, a(n) for n = 0..899</a>

%F a(n) = Sum_{k=0..n} 3^k*binomial(n,k)*binomial(2*k,k).

%F a(n) = [x^n] (1+7*x+9*x^2)^n.

%F n * a(n) = 7 * (2*n-1) * a(n-1) - 13 * (n-1) * a(n-2) for n > 1.

%F E.g.f.: exp(7*x) * BesselI(0,6*x). - _Ilya Gutkovskiy_, Feb 01 2021

%F a(n) ~ 13^(n + 1/2) / (2 * sqrt(3*Pi*n)). - _Vaclav Kotesovec_, Nov 13 2021

%t a[n_] := Sum[3^k * Binomial[n, k] * Binomial[2*k, k], {k, 0, n}]; Array[a, 18, 0] (* _Amiram Eldar_, Feb 01 2021 *)

%t nxt[{n_,a_,b_}]:={n+1,b,(7*b(2n+1)-13*n*a)/(n+1)}; Join[{1},NestList[nxt,{2,7,67},20] [[All,2]]] (* _Harvey P. Dale_, Apr 27 2022 *)

%o (PARI) my(N=20, x='x+O('x^N)); Vec(1/sqrt((1-x)*(1-13*x)))

%o (PARI) {a(n) = sum(k=0, n, 3^k*binomial(n, k)*binomial(2*k, k))}

%o (PARI) {a(n) = polcoef((1+7*x+9*x^2)^n, n)}

%Y Column k=3 of A340970.

%Y Cf. A322246, A337167.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Feb 01 2021