login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340904
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * sigma_1(k) * a(n-k).
4
1, 1, 5, 28, 225, 2206, 26174, 361278, 5704401, 101297701, 1998893240, 43386854622, 1027353587730, 26353742447280, 728030940612638, 21548668265211778, 680330296613877761, 22821706122361385354, 810587673640374442445, 30390159250481750866640
OFFSET
0,3
LINKS
FORMULA
E.g.f.: 1 / (1 - Sum_{i>=1} Sum_{j>=1} i * x^(i*j) / (i*j)!).
E.g.f.: 1 / (1 - Sum_{k>=1} sigma_1(k) * x^k/k!). - Seiichi Manyama, Mar 29 2022
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] DivisorSigma[1, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
nmax = 19; CoefficientList[Series[1/(1 - Sum[Sum[i x^(i j)/(i j)!, {j, 1, nmax}], {i, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, sigma(k)*x^k/k!)))) \\ Seiichi Manyama, Mar 29 2022
(PARI) a(n) = if(n==0, 1, sum(k=1, n, sigma(k)*binomial(n, k)*a(n-k))); \\ Seiichi Manyama, Mar 29 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 26 2021
STATUS
approved