login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367272
a(n) = Sum_{k=0..n} binomial(n, k)^2 * k^(n - k).
0
1, 1, 5, 28, 209, 1826, 18217, 203106, 2487361, 33077566, 473318201, 7234847126, 117435618577, 2014339775800, 36360190887217, 688237505878726, 13618646813974785, 280960214041690038, 6028928694559721305, 134277542969681115870, 3098232871805383942801
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} binomial(n, k) * A059297(n, k).
log(a(n)) ~ n*(log(n) - log(log(n)) - 1 + (3*log(log(n)) + 2)/log(n) - 1/log(n)^2). - Vaclav Kotesovec, Nov 12 2023
MAPLE
a := n -> add(binomial(n, k)^2*k^(n - k), k = 0 .. n):
seq(a(n), n = 0..22);
MATHEMATICA
Join[{1}, Table[Sum[Binomial[n, k]^2 * k^(n-k), {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Nov 12 2023 *)
CROSSREFS
Cf. A059297.
Sequence in context: A292426 A347005 A356025 * A317968 A107875 A340904
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 11 2023
STATUS
approved