OFFSET
0,10
COMMENTS
See section 4 and table 1 in the Labelle reference.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325
G. Labelle, C. Lamathe and P. Leroux, Labeled and unlabeled enumeration of k-gonal 2-trees, arXiv:math/0312424 [math.CO], Dec 23 2003.
EXAMPLE
Array begins:
=======================================================
n\k | 2 3 4 5 6 7 8 9
----+--------------------------------------------------
0 | 1 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 1 1 1 1 1 1 1 ...
3 | 2 2 3 3 4 4 5 5 ...
4 | 3 5 8 11 16 20 26 32 ...
5 | 6 12 32 56 103 158 245 343 ...
6 | 11 39 141 359 799 1539 2737 4505 ...
7 | 23 136 749 2597 7286 16970 35291 66603 ...
8 | 47 529 4304 20386 71094 199879 483819 1045335 ...
...
PROG
(PARI)
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
B(n, k)={my(p=1+O(x)); for(n=1, n, p=1+x*Ser(EulerT(Vec(p^(k-1))))); p}
C(p, k)={p(1) - x*p(1)^k + x*sumdiv(k, d, eulerphi(d)*p(d)^(k/d))/k}
S(p, k)={my(p2=p(2)); if(k%2, 1+x*Ser(EulerT(Vec(x*p2^(k\2) + x^2*(p2^(k-1) - p(4)^(k\2))/2 ))), my(r=p2^(k/2-1), q=1+O(x)); while(serprec(q, x)<serprec(p2, x), my(t=r*q); q=1+x*Ser(EulerT(Vec(x*t + x^2*subst(p(1)^(k-1) - t, x, x^2)/2)))); q + x*p2^(k/2-1)*(p2-q^2)/2)}
U(n, k)={my(b=B(n, k), p(d)=subst(b + O(x*x^(n\d)), x, x^d)); Vec(C(p, k) + S(p, k))/2}
{ Mat(vector(7, k, U(7, k+1)~)) }
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 02 2021
STATUS
approved