login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340811
Array read by antidiagonals: T(n,k) is the number of unlabeled k-gonal 2-trees with n polygons, n >= 0, k >= 2.
13
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 3, 5, 6, 1, 1, 1, 3, 8, 12, 11, 1, 1, 1, 4, 11, 32, 39, 23, 1, 1, 1, 4, 16, 56, 141, 136, 47, 1, 1, 1, 5, 20, 103, 359, 749, 529, 106, 1, 1, 1, 5, 26, 158, 799, 2597, 4304, 2171, 235, 1, 1, 1, 6, 32, 245, 1539, 7286, 20386, 26492, 9368, 551
OFFSET
0,10
COMMENTS
See section 4 and table 1 in the Labelle reference.
LINKS
G. Labelle, C. Lamathe and P. Leroux, Labeled and unlabeled enumeration of k-gonal 2-trees, arXiv:math/0312424 [math.CO], Dec 23 2003.
EXAMPLE
Array begins:
=======================================================
n\k | 2 3 4 5 6 7 8 9
----+--------------------------------------------------
0 | 1 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 1 1 1 1 1 1 1 ...
3 | 2 2 3 3 4 4 5 5 ...
4 | 3 5 8 11 16 20 26 32 ...
5 | 6 12 32 56 103 158 245 343 ...
6 | 11 39 141 359 799 1539 2737 4505 ...
7 | 23 136 749 2597 7286 16970 35291 66603 ...
8 | 47 529 4304 20386 71094 199879 483819 1045335 ...
...
PROG
(PARI)
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
B(n, k)={my(p=1+O(x)); for(n=1, n, p=1+x*Ser(EulerT(Vec(p^(k-1))))); p}
C(p, k)={p(1) - x*p(1)^k + x*sumdiv(k, d, eulerphi(d)*p(d)^(k/d))/k}
S(p, k)={my(p2=p(2)); if(k%2, 1+x*Ser(EulerT(Vec(x*p2^(k\2) + x^2*(p2^(k-1) - p(4)^(k\2))/2 ))), my(r=p2^(k/2-1), q=1+O(x)); while(serprec(q, x)<serprec(p2, x), my(t=r*q); q=1+x*Ser(EulerT(Vec(x*t + x^2*subst(p(1)^(k-1) - t, x, x^2)/2)))); q + x*p2^(k/2-1)*(p2-q^2)/2)}
U(n, k)={my(b=B(n, k), p(d)=subst(b + O(x*x^(n\d)), x, x^d)); Vec(C(p, k) + S(p, k))/2}
{ Mat(vector(7, k, U(7, k+1)~)) }
CROSSREFS
Cf. A340812 (with oriented polygons).
Sequence in context: A066170 A046854 A184957 * A340812 A228349 A285718
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 02 2021
STATUS
approved