login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340812
Array read by antidiagonals: T(n,k) is the number of unlabeled oriented k-gonal 2-trees with n oriented polygons, n >= 0, k >= 2.
5
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 3, 7, 6, 1, 1, 1, 3, 11, 18, 11, 1, 1, 1, 4, 17, 49, 68, 23, 1, 1, 1, 4, 25, 96, 252, 251, 47, 1, 1, 1, 5, 33, 177, 687, 1406, 1020, 106, 1, 1, 1, 5, 43, 285, 1537, 5087, 8405, 4258, 235, 1, 1, 1, 6, 55, 442, 3014, 14310, 40546, 52348, 18580, 551
OFFSET
0,10
COMMENTS
See section 3 of the Labelle reference.
LINKS
G. Labelle, C. Lamathe and P. Leroux, Labeled and unlabeled enumeration of k-gonal 2-trees, arXiv:math/0312424 [math.CO], Dec 23 2003.
FORMULA
G.f. of column k: B(x) - x*B(x)^k + x*(Sum_{d|k} phi(d)*B(x^d)^(k/d))/k, where B(x) if the g.f. of column k of A340814.
EXAMPLE
Array begins:
=========================================================
n\k | 2 3 4 5 6 7 8 9
----+----------------------------------------------------
0 | 1 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 1 1 1 1 1 1 1 ...
3 | 2 2 3 3 4 4 5 5 ...
4 | 3 7 11 17 25 33 43 55 ...
5 | 6 18 49 96 177 285 442 635 ...
6 | 11 68 252 687 1537 3014 5370 8901 ...
7 | 23 251 1406 5087 14310 33632 70000 132533 ...
8 | 47 1020 8405 40546 141582 399065 966254 2089103 ...
...
PROG
(PARI) \\ here B(n, k) gives column k of A340814.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
B(n, k)={my(p=1+O(x)); for(n=1, n, p=1+x*Ser(EulerT(Vec(p^(k-1))))); p}
C(n, k)={my(p=B(n, k)); Vec(p - x*p^k + x*sumdiv(k, d, eulerphi(d)*subst(p + O(x*x^(n\d)), x, x^d)^(k/d))/k)}
{ Mat(vector(7, k, C(7, k+1)~)) }
CROSSREFS
Columns 2..4 are A000055, A303742, A340813.
Cf. A340811 (unoriented case), A340814 (edge-rooted case).
Sequence in context: A046854 A184957 A340811 * A228349 A285718 A205792
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 02 2021
STATUS
approved