login
A340535
Number of domino tilings (or dimer coverings) of the 2n X n grid.
1
1, 1, 5, 41, 2245, 185921, 106912793, 90124167441, 540061286536921, 4652799879944138561, 289415868852204573601981, 25545661075321867247577262777, 16457725663617130715785831809325501, 14905470663149838513993965664256435411841, 99323759360556656337166635121447749135517599089
OFFSET
0,3
LINKS
FORMULA
a(n) = A187596(2n,n) = A187596(n,2n) = A187616(2n,n).
a(n) = A099390(2n,n) = A099390(n,2n) for n >= 1.
EXAMPLE
a(2) = 5:
.___. .___. .___. .___. .___.
|___| |___| |___| | | | | | |
|___| |___| | | | |_|_| |_|_|
|___| | | | |_|_| |___| | | |
|___| |_|_| |___| |___| |_|_|
.
MAPLE
b:= proc(m, n) option remember; local i, j, t, M;
M:= Matrix(n*m, shape=skewsymmetric);
for i to n do for j to m do t:= (i-1)*m+j;
if j<m then M[t, t+1]:= 1 fi;
if i<n then M[t, t+m]:= 1-2*irem(j, 2) fi
od od;
isqrt(LinearAlgebra[Determinant](M))
end:
a:= n-> b(2*n, n):
seq(a(n), n=0..15);
MATHEMATICA
T[_?OddQ, _?OddQ] = 0;
T[m_, n_] := Product[2(2+Cos[2 j Pi/(m+1)]+Cos[2 k Pi/(n+1)]), {k, 1, n/2}, {j, 1, m/2}];
a[n_] := T[2n, n] // Round;
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 27 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 10 2021
STATUS
approved