login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340534
a(n) is the least product of n consecutive primes that is divisible by the sum of those primes, or 0 if there is no such product.
0
2, 0, 30, 0, 15015, 0, 37182145, 9699690, 33426748355, 0, 3710369067405, 0, 304250263527210, 0, 37420578814667938361329, 0, 18598027670889965365580513, 0, 107254825578022430263302818471, 0, 44510752614879308559270669665465, 0, 267064515689275851355624017992790, 0, 116431182179248680450031658440253681535, 0
OFFSET
1,1
COMMENTS
a(27) > 10^225 if it is not 0.
If n is even, a(n) is either A002110(n) or 0.
a(n) = A002110(n) for n in A051838.
EXAMPLE
a(5) = 15015 = 3*5*7*11*13 is the product of 5 consecutive primes and is divisible by 3+5+7+11+13 = 39.
MAPLE
f:= proc(n) local L, i, p;
L:= [seq(ithprime(i), i=1..n)]:
p:= convert(L, `*`);
if n::even then
if p mod convert(L, `+`) = 0 then return p else return 0 fi
else
do
p:= convert(L, `*`);
if p mod convert(L, `+`) = 0 then return p fi;
if p > 10^225 then return FAIL fi;
L:= [op(L[2..-1]), nextprime(L[-1])];
od
fi;
end proc:
map(f, [$1..26]);
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jan 10 2021
STATUS
approved