login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340502
Number of zeros in row n of triangle A249223.
1
0, 0, 1, 0, 1, 0, 2, 0, 1, 1, 3, 0, 3, 1, 1, 0, 4, 0, 4, 0, 2, 3, 5, 0, 3, 3, 2, 0, 6, 0, 6, 0, 3, 4, 3, 0, 7, 5, 4, 0, 7, 0, 7, 1, 1, 6, 8, 0, 5, 1, 5, 2, 8, 0, 4, 0, 6, 7, 9, 0, 9, 7, 2, 0, 4, 0, 10, 4, 7, 1, 10, 0, 10, 8, 3, 4, 5, 1, 11, 0, 4, 9, 11, 0, 6, 9, 8, 0, 11, 0, 5, 6, 9
OFFSET
1,7
COMMENTS
Equivalently, half the number of zeros in row n of A262045.
LINKS
FORMULA
a(k) = 0 iff A237271(k) = 1.
If p is an odd prime, a(p) = A003056(p) - 1 and a(p^2) = p - 2.
MAPLE
r := proc(n) floor((sqrt(1+8*n)-1)/2) ; end proc: # A003056
A237048:=proc(n, k) local i; global r;
if n<(k-1)*k/2 or k>r(n) then return(0); fi;
if (k mod 2)=1 and (n mod k)=0 then return(1); fi;
if (k mod 2)=0 and ((n-k/2) mod k) = 0 then return(1); fi;
return(0);
end;
A249223:=proc(n, k) local i; global r, A237048;
if n<(k-1)*k/2 or k>r(n) then return(0); fi;
add( (-1)^(i+1)*A237048(n, i), i=1..k);
end;
A340502 := proc(n) local ct, k; global r, A249223;
ct:=0;
for k from 1 to r(n) do if A249223(n, k)=0 then ct:=ct+1; fi; od:
ct;
end;
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 15 2021
STATUS
approved