OFFSET
2,3
COMMENTS
Note that "pandigital" just means every digit appears at least once. The condition here is stronger. Maybe this should be called "Smallest strictly pandigital square in base b"?
Does this sequence contain infinitely many positive terms? Equally, is A339693 infinite?
It is shown in A258103 that a(n) = -1 for n = 2,3,5,13,17,21 and infinitely many other values.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 2..29
EXAMPLE
base a(base) digits
4 225 [3, 2, 0, 1]
6 38025 [4, 5, 2, 0, 1, 3]
7 314721 [2, 4, 5, 0, 3, 6, 1]
8 3111696 [1, 3, 6, 7, 5, 4, 2, 0]
9 61058596 [1, 3, 6, 8, 0, 2, 5, 7, 4]
10 1026753849 [1, 0, 2, 6, 7, 5, 3, 8, 4, 9]
11 31529329225 [1, 2, 4, 0, 10, 5, 3, 6, 7, 8, 9]
12 892067027049 [1, 2, 4, 10, 7, 11, 5, 3, 8, 6, 0, 9]
14 803752551280900 [1, 0, 2, 6, 9, 11, 8, 12, 5, 7, 13, 3, 10, 4]
PROG
(Python)
from sympy import integer_nthroot
def digits(n, b):
out = []
while n >= b: n, r = divmod(n, b); out.append(r)
return [n] + out[::-1]
def a(n):
b, b2b = n, n**n
r, a = integer_nthroot(b**(b-1), 2); s = r**2
while s < b**(b-1): s += 2*r + 1; r += 1
while s < b2b:
if len(set(digits(s, b))) == n: return s
s += 2*r + 1; r += 1
return -1
print([a(n) for n in range(2, 13)]) # Michael S. Branicky, Jan 13 2021
CROSSREFS
KEYWORD
sign,base
AUTHOR
N. J. A. Sloane, Jan 13 2021
EXTENSIONS
a(10)-a(22) from Hugo Pfoertner and Alois P. Heinz, Jan 13 2021
STATUS
approved