login
A340144
Numerators of the sequence whose Dirichlet convolution with itself yields sequence A247074(x) = phi(x)/(Product_{primes p dividing x} gcd(p-1, x-1)).
3
1, 1, 1, 7, 1, 3, 1, 25, 11, 7, 1, 19, 1, 11, 3, 363, 1, 31, 1, 43, 5, 19, 1, 63, 19, 23, 61, 3, 1, 19, 1, 1335, 9, 31, 11, 189, 1, 35, 11, 139, 1, 29, 1, 115, 7, 43, 1, 867, 27, 127, 15, 11, 1, 163, 19, 279, 17, 55, 1, 93, 1, 59, 51, 9923, 5, -15, 1, 187, 21, 3, 1, 615, 1, 71, 55, 19, 29, 59, 1, 1875, 1363, 79, 1, 203
OFFSET
1,4
EXAMPLE
For n = 561 = 3*11*17, its divisors d are: 1, 3, 11, 17, 33, 51, 187, 561.
For this sequence, the corresponding terms a(d) are: 1, 1, 1, 1, 9, 15, 79, -99.
For A046644, the corresponding terms are: 1, 2, 2, 2, 4, 4, 4, 8.
Convolving these ratios as Sum_{d|561} r(d)*r(n/d) = 2*((1/1)*(-99/8) + (1/2)*(79/4) + (1/2)*(15/4) + (1/2)*(9/4)) yields 1 as expected, because 561 is Carmichael number (A002997) and A247074 obtains value 1 on all of them.
PROG
(PARI)
up_to = 65537;
A247074(n) = { my(f=factor(n)); eulerphi(f)/prod(i=1, #f~, gcd(f[i, 1]-1, n-1)); }; \\ From A247074
DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};
v340144rat = DirSqrt(vector(up_to, n, A247074(n)));
A340144(n) = numerator(v340144rat[n]);
CROSSREFS
Cf. A046644 (denominators).
Cf. A247074.
Cf. also A340141, A340145, A340146.
Sequence in context: A317830 A317938 A317834 * A340141 A342377 A346103
KEYWORD
sign
AUTHOR
Antti Karttunen, Dec 29 2020
STATUS
approved