login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A340145
Dirichlet inverse of A247074(x) = phi(x)/(Product_{primes p dividing x} gcd(p-1, x-1)).
4
1, -1, -1, -1, -1, 0, -1, -1, -2, -2, -1, 1, -1, -4, 0, -1, -1, 1, -1, 1, -1, -8, -1, 2, -4, -10, -4, 9, -1, 2, -1, -1, -3, -14, -4, 3, -1, -16, -4, 4, -1, 4, -1, 1, 4, -20, -1, 3, -6, -5, -6, 17, -1, 4, -8, -10, -7, -26, -1, 6, -1, -28, 0, -1, -1, 24, -1, 1, -9, 18, -1, 4, -1, -34, 1, 25, -13, 10, -1, 7, -8, -38, -1
OFFSET
1,9
PROG
(PARI)
up_to = 65537;
A247074(n) = { my(f=factor(n)); eulerphi(f)/prod(i=1, #f~, gcd(f[i, 1]-1, n-1)); }; \\ From A247074
DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(d<n, v[n/d]*u[d], 0))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
v340145 = DirInverse(vector(up_to, n, A247074(n)));
A340145(n) = v340145[n];
CROSSREFS
Cf. A247074.
Cf. also A340142, A340144, A340146.
Sequence in context: A140751 A259922 A162741 * A104320 A350818 A340142
KEYWORD
sign
AUTHOR
Antti Karttunen, Dec 29 2020
STATUS
approved