OFFSET
1,1
COMMENTS
A coreful divisor d of a number k is a divisor with the same set of distinct prime factors as k, or rad(d) = rad(k), where rad(k) is the largest squarefree divisor of k (A007947).
Apparently, the least odd term in this sequence is 3^4 * 5^3 * 7^3 * 11^2 * 13^2 * 17^2 * 19^2 * 23^2 * 29^2 = 3296233276111741840875.
The asymptotic density of this sequence is Sum_{n>=1} f(A364991(n)) = 0.0004006..., where f(n) = (6/(Pi^2*n)) * Product_{prime p|n} (p/(p+1)). - Amiram Eldar, Aug 15 2023
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
EXAMPLE
5400 is a term since csigma(5400) = 16380 > 3 * 5400.
MATHEMATICA
f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^5], s[#] > 3*# &]
PROG
(PARI) s(n) = {my(f = factor(n)); prod(i = 1, #f~, sigma(f[i, 1]^f[i, 2]) - 1); }
is(n) = s(n) > 3*n; \\ Amiram Eldar, Aug 15 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Dec 28 2020
STATUS
approved