login
A364991
Primitive coreful 3-abundant numbers: coreful 3-abundant numbers (A340109) that are powerful numbers (A001694).
2
5400, 7200, 10800, 14400, 16200, 18000, 21168, 21600, 27000, 28800, 32400, 36000, 42336, 43200, 48600, 54000, 56448, 57600, 63504, 64800, 72000, 81000, 84672, 86400, 88200, 90000, 97200, 98784, 104544, 108000, 112896, 115200, 127008, 129600, 135000, 144000, 145800
OFFSET
1,1
COMMENTS
Powerful numbers k such that csigma(k) > 3*k, where csigma(k) = A057723(k) is the sum of the coreful divisors of k.
If m is a term and k is a squarefree number coprime to m, then csigma(k*m) = csigma(k) * csigma(m) = k * csigma(m) > 3*k*m, so k*m is a coreful 3-abundant number. Therefore, the sequence of coreful 3-abundant numbers (A340109) can be generated from this sequence by multiplying with coprime squarefree numbers. The asymptotic density of the coreful 3-abundant numbers can be calculated from this sequence (see comment in A340109).
LINKS
MATHEMATICA
f[p_, e_] := (p^(e+1)-1)/(p-1)-1; g[1] = 1; g[n_] := If[AllTrue[(fct = FactorInteger[n])[[;; , 2]], #>1 &], Times @@ f @@@ fct, 0]; seq[kmax_] := Module[{s = {}}, Do[If[g[k] > 3*k, AppendTo[s, k]], {k, 1, kmax}]; s]; seq[500000]
PROG
(PARI) s(f) = prod(i = 1, #f~, sigma(f[i, 1]^f[i, 2]) - 1);
lista(kmax) = {my(f); for(k=2, kmax, f=factor(k); if(vecmin(f[, 2]) > 1 && s(f) > 3*k, print1(k, ", "))); }
CROSSREFS
Intersection of A001694 and A340109.
Subsequence of A356871.
Sequence in context: A335939 A328562 A340109 * A190106 A252572 A035902
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 15 2023
STATUS
approved