login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335936
Infinitary weird numbers (A306984) whose number of divisors is not a power of 2.
2
5390, 7400, 11830, 17920, 20230, 25270, 37030, 43750, 58870, 67270, 95830, 117670, 129430, 154630, 168070, 196630, 243670, 260470, 314230, 352870, 373030, 436870, 459270, 482230, 554470, 658630, 714070, 742630, 801430, 831670, 893830, 1024870, 1129030, 1201270
OFFSET
1,1
COMMENTS
Weird numbers (A006037) whose number of divisors is a power of 2 (A036537) are also infinitary weird numbers (A306983), since all of their divisors are infinitary.
LINKS
MATHEMATICA
fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; infabQ[n_] := isigma[n] > 2*n; idivs[x_] := If[x == 1, 1, Sort @ Flatten @ Outer[Times, Sequence @@ (FactorInteger[x] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; infwQ[n_] := infabQ[n] && Module[{d = Most @ idivs[n]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n] == 0]; pow2Q[n_] := n == 2^IntegerExponent[n, 2]; seq = {}; Do[If[!pow2Q[DivisorSigma[0, n]] && infwQ[n], AppendTo[sm n]], {n, 1, 10^5}]; s
CROSSREFS
Intersection of A162643 and A306984.
Sequence in context: A057850 A058325 A224688 * A335939 A328562 A340109
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jun 30 2020
EXTENSIONS
More terms from Amiram Eldar, Mar 25 2023
STATUS
approved