OFFSET
1,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..200
Eric Weisstein's World of Mathematics, King Graph
Eric Weisstein's World of Mathematics, Spanning Tree
FORMULA
Empirical g.f.: -x*(218700000000*x^8 - 2040471000000*x^7 + 538526880000*x^6 + 311791396500*x^5 - 17462695797*x^4 - 80280747*x^3 + 10513308*x^2 - 21759*x - 1) / (656100000000*x^8 - 4293081000000*x^7 + 4819127400000*x^6 - 930215250900*x^5 + 51621632181*x^4 - 1033572501*x^3 + 5949540*x^2 - 5889*x + 1). - Vaclav Kotesovec, Dec 09 2020
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
def make_nXk_king_graph(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
if i > 1:
grids.append((i + (j - 1) * k, i + j * k - 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A338029(n, k):
if n == 1 or k == 1: return 1
universe = make_nXk_king_graph(n, k)
GraphSet.set_universe(universe)
spanning_trees = GraphSet.trees(is_spanning=True)
return spanning_trees.len()
def A339257(n):
return A338029(n, 5)
print([A339257(n) for n in range(1, 15)])
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 29 2020
STATUS
approved