login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339254
a(n) = 6*a(n - 1) - 12*a(n - 2) + 8*a(n - 3) for n >= 5, a(0) = 1, a(1) = 7, a(2) = 24, a(3) = 70, a(4) = 193.
2
1, 7, 24, 70, 193, 510, 1304, 3248, 7920, 18976, 44800, 104448, 240896, 550400, 1247232, 2805760, 6270976, 13934592, 30801920, 67764224, 148439040, 323878912, 704118784, 1525678080, 3295674368, 7098859520, 15250489344, 32682016768, 69877104640, 149082341376
OFFSET
0,2
FORMULA
a(n) = [x^n] (5*x^4 + 2*x^3 - 6*x^2 + x + 1) / (1 - 2*x)^3.
a(n) = n! [x^n] (exp(2*x)*(18*x^2 + 52*x + 35) - 10*x - 19)/16.
a(n) = 2^(n-5)*(70 + 43*n + 9*n^2) for n >= 2. - Stefano Spezia, Nov 29 2020
MAPLE
a := proc(n) option remember; if n < 5 then return [1, 7, 24, 70, 193][n + 1] fi;
6*a(n - 1) - 12*a(n - 2) + 8*a(n - 3) end: seq(a(n), n = 0..29);
MATHEMATICA
CoefficientList[Series[(5 x^4 + 2 x^3 - 6 x^2 + x + 1)/(1 - 2 x)^3, {x, 0, 29}], x]
CROSSREFS
Sequence in context: A217746 A211381 A378023 * A305676 A101903 A212504
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Nov 29 2020
STATUS
approved