login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 6*a(n - 1) - 12*a(n - 2) + 8*a(n - 3) for n >= 5, a(0) = 1, a(1) = 7, a(2) = 24, a(3) = 70, a(4) = 193.
2

%I #17 Nov 29 2020 08:32:11

%S 1,7,24,70,193,510,1304,3248,7920,18976,44800,104448,240896,550400,

%T 1247232,2805760,6270976,13934592,30801920,67764224,148439040,

%U 323878912,704118784,1525678080,3295674368,7098859520,15250489344,32682016768,69877104640,149082341376

%N a(n) = 6*a(n - 1) - 12*a(n - 2) + 8*a(n - 3) for n >= 5, a(0) = 1, a(1) = 7, a(2) = 24, a(3) = 70, a(4) = 193.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-12,8).

%F a(n) = [x^n] (5*x^4 + 2*x^3 - 6*x^2 + x + 1) / (1 - 2*x)^3.

%F a(n) = n! [x^n] (exp(2*x)*(18*x^2 + 52*x + 35) - 10*x - 19)/16.

%F a(n) = 2^(n-5)*(70 + 43*n + 9*n^2) for n >= 2. - _Stefano Spezia_, Nov 29 2020

%p a := proc(n) option remember; if n < 5 then return [1, 7, 24, 70, 193][n + 1] fi;

%p 6*a(n - 1) - 12*a(n - 2) + 8*a(n - 3) end: seq(a(n), n = 0..29);

%t CoefficientList[Series[(5 x^4 + 2 x^3 - 6 x^2 + x + 1)/(1 - 2 x)^3, {x,0,29}], x]

%K nonn,easy

%O 0,2

%A _Peter Luschny_, Nov 29 2020