

A101214


a(n) = n * (n+1)^2 * (n+2)^3 * (n+3)^4.


1



0, 27648, 720000, 7776000, 51861600, 252887040, 987614208, 3265920000, 9487368000, 24839654400, 59717623680, 133689523968, 281719620000, 563576832000, 1077621350400, 1980468817920, 3514388300928, 6044699520000, 10109900304000, 16487780601600, 26281368257760
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (11,55,165,330,462,462,330,165,55,11,1).


FORMULA

G.f.: 288*x*(x^6+109*x^5+1435*x^4+4735*x^3+4780*x^2+1444*x+96) / (x1)^11.  Colin Barker, Jul 04 2015


EXAMPLE

a(1) = 1 * (1+1)^2 * (1+2)^3 * (1+3)^4 = 27648.


MATHEMATICA

Table[n*(n + 1)^2*(n + 2)^3*(n + 3)^4, {n, 0, 20}] (* Stefan Steinerberger, Feb 26 2006 *)


PROG

(Maxima) A101214(n):=n*(n+1)^2*(n+2)^3*(n+3)^4$ makelist(A101214(n), n, 0, 20); /* Martin Ettl, Dec 15 2012 */
(PARI) a(n) = n * (n+1)^2 * (n+2)^3 * (n+3)^4 \\ Colin Barker, Jul 04 2015
(PARI) concat(0, Vec(288*x*(x^6 +109*x^5 +1435*x^4 +4735*x^3 +4780*x^2 +1444*x +96)/(x 1)^11 + O(x^100))) \\ Colin Barker, Jul 04 2015


CROSSREFS

Sequence in context: A025291 A025309 A097244 * A202589 A079321 A251235
Adjacent sequences: A101211 A101212 A101213 * A101215 A101216 A101217


KEYWORD

nonn,easy


AUTHOR

Parthasarathy Nambi, Dec 13 2004


EXTENSIONS

More terms from Stefan Steinerberger, Feb 26 2006


STATUS

approved



