login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339182
Primes p such that q = p mod A001414(p-1) = p mod A001414(p+1) is prime.
2
251, 991, 1429, 1567, 1597, 1741, 2243, 3739, 4003, 4049, 4129, 4271, 4513, 5407, 6673, 6733, 9539, 9631, 10639, 14627, 14947, 16561, 18617, 18749, 18797, 19081, 20551, 24851, 28729, 31151, 37571, 42641, 49529, 50047, 54751, 56897, 59513, 65563, 73751, 75683, 77743, 89783, 91807, 96799, 104537
OFFSET
1,1
COMMENTS
Members p of A339180 such that p mod A001414(p-1) is prime.
LINKS
EXAMPLE
a(4) = 1567 is in the sequence because 1567 is prime, A001414(1566) = 2+3+3+3+29 = 40, A001414(1568) = 2+2+2+2+2+7+7=24, 1567 mod 40 = 1567 mod 24 = 7 is prime.
MAPLE
spf:= n -> add(t[1]*t[2], t=ifactors(n)[2]):
filter:= proc(p) local v;
if not isprime(p) then return false fi;
v:= p mod spf(p-1);
isprime(v) and p mod spf(p+1) = v
end proc:
select(filter, [seq(i, i=3..10^5, 2)]);
CROSSREFS
Sequence in context: A179231 A108833 A228672 * A008917 A025396 A185941
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Nov 26 2020
STATUS
approved