login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025396
Numbers that are the sum of 3 positive cubes in exactly 2 ways.
10
251, 1009, 1366, 1457, 1459, 1520, 1730, 1737, 1756, 1763, 1793, 1854, 1945, 2008, 2072, 2241, 2414, 2456, 2458, 2729, 2736, 3060, 3391, 3457, 3592, 3599, 3655, 3745, 3926, 4105, 4112, 4131, 4168, 4229, 4320, 4376, 4402, 4437, 4447, 4473, 4528, 4616
OFFSET
1,1
COMMENTS
Subset of A008917; A025397 gives examples of numbers which are in A008917 but not here. - R. J. Mathar, May 28 2008
A025456(a(n)) = 2. - Reinhard Zumkeller, Apr 23 2009
Superset of A024974 . - Christian N. K. Anderson, Apr 11 2013
LINKS
Christian N. K. Anderson, Table of n, a(n) for n = 1..10000
Christian N. K. Anderson, Decomposition of the first 10000 terms into the sets of three cubes
EXAMPLE
a(1) = 251 = 1^3+5^3+5^3 = 2^3+3^3+6^3. - Christian N. K. Anderson, Apr 11 2013
MATHEMATICA
Select[Range[5000], Length[DeleteCases[PowersRepresentations[#, 3, 3], _?(MemberQ[#, 0]&)]] == 2&] (* Harvey P. Dale, Jan 18 2012 *)
PROG
(PARI) is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1, k, for(b=a, k, for(c=b, k, if(a^3+b^3+c^3==n, d++)))); d
n=3; while(n<5000, if(is(n)==2, print1(n, ", ")); n++) \\ Derek Orr, Aug 27 2015
KEYWORD
nonn
STATUS
approved