login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are the sum of 3 positive cubes in exactly 2 ways.
10

%I #36 Jul 31 2021 23:41:12

%S 251,1009,1366,1457,1459,1520,1730,1737,1756,1763,1793,1854,1945,2008,

%T 2072,2241,2414,2456,2458,2729,2736,3060,3391,3457,3592,3599,3655,

%U 3745,3926,4105,4112,4131,4168,4229,4320,4376,4402,4437,4447,4473,4528,4616

%N Numbers that are the sum of 3 positive cubes in exactly 2 ways.

%C Subset of A008917; A025397 gives examples of numbers which are in A008917 but not here. - _R. J. Mathar_, May 28 2008

%C A025456(a(n)) = 2. - _Reinhard Zumkeller_, Apr 23 2009

%C Superset of A024974 . - _Christian N. K. Anderson_, Apr 11 2013

%H Christian N. K. Anderson, <a href="/A025396/b025396.txt">Table of n, a(n) for n = 1..10000</a>

%H Christian N. K. Anderson, <a href="/A025396/a025396.txt">Decomposition</a> of the first 10000 terms into the sets of three cubes

%e a(1) = 251 = 1^3+5^3+5^3 = 2^3+3^3+6^3. - _Christian N. K. Anderson_, Apr 11 2013

%t Select[Range[5000], Length[DeleteCases[PowersRepresentations[#,3,3], _?(MemberQ[#,0]&)]] == 2&] (* _Harvey P. Dale_, Jan 18 2012 *)

%o (PARI) is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1,k,for(b=a,k,for(c=b,k,if(a^3+b^3+c^3==n,d++))));d

%o n=3;while(n<5000,if(is(n)==2,print1(n,", "));n++) \\ _Derek Orr_, Aug 27 2015

%Y Cf. A008917, A025322, A025395, A025397, A025404, A343708, A344192.

%K nonn

%O 1,1

%A _David W. Wilson_