Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Nov 30 2020 01:05:20
%S 251,991,1429,1567,1597,1741,2243,3739,4003,4049,4129,4271,4513,5407,
%T 6673,6733,9539,9631,10639,14627,14947,16561,18617,18749,18797,19081,
%U 20551,24851,28729,31151,37571,42641,49529,50047,54751,56897,59513,65563,73751,75683,77743,89783,91807,96799,104537
%N Primes p such that q = p mod A001414(p-1) = p mod A001414(p+1) is prime.
%C Members p of A339180 such that p mod A001414(p-1) is prime.
%H Robert Israel, <a href="/A339182/b339182.txt">Table of n, a(n) for n = 1..2300</a>
%e a(4) = 1567 is in the sequence because 1567 is prime, A001414(1566) = 2+3+3+3+29 = 40, A001414(1568) = 2+2+2+2+2+7+7=24, 1567 mod 40 = 1567 mod 24 = 7 is prime.
%p spf:= n -> add(t[1]*t[2], t=ifactors(n)[2]):
%p filter:= proc(p) local v;
%p if not isprime(p) then return false fi;
%p v:= p mod spf(p-1);
%p isprime(v) and p mod spf(p+1) = v
%p end proc:
%p select(filter, [seq(i, i=3..10^5, 2)]);
%Y Cf. A001414, A339180.
%K nonn
%O 1,1
%A _J. M. Bergot_ and _Robert Israel_, Nov 26 2020