|
|
A339008
|
|
Least k such that p = k^2 + 1 and q = (k+2n)^2 + 1 are two consecutive prime numbers of the same form with q - p square.
|
|
2
|
|
|
24, 6, 312984, 16896, 240, 734994, 10640, 10360, 1946016, 2550, 13189264, 72996, 416520, 2184336, 1584360, 202484, 232696, 1700150, 2394456, 375360, 8736504, 9237866, 53629744, 360126, 87000, 574339974, 82404216, 23237760, 1249877496, 826650, 127119344, 1527720
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
4*n*(k + n) is a square. If n is a square, then k + n is also a square.
If n is prime, then n divides k.
a(n) = A339007(n) for n = 1, 2, 3, 4, 6, 7 and 9.
|
|
LINKS
|
|
|
EXAMPLE
|
a(1) = 24 because 24^2 + 1 = 577, (24 + 2)^2 + 1 = 677. The numbers 577 and 677 are two consecutive primes of the form m^2+1, and 677 - 577 = 10^2 is a square. The other values m such that p = m^2 + 1 and q = (m+2)^2 + 1 are consecutive primes with q - p square are 11024, 133224, 156024, 342224, 416024,...
a(2) = 6 because 6^2 + 1 = 37, (6 + 4)^2 + 1 = 101. The numbers 37 and 101 are two consecutive primes of the form m^2+1, and 101 - 37 = 8^2 is a square. The other values m such that p = m^2 + 1 and q = (m+4)^2 + 1 are consecutive primes with q - p square are 16, 126, 1350, 1456, 1566, 2310, 5200,...
|
|
MAPLE
|
for n from 1 to 25 do:
ii:=0:n1:=0:q:=2:
for k from 2 by 2 to 10^9 while(ii=0) do:
p:=k^2+1:
if isprime(p)
then
x:=p-q:q:=p:z:=sqrt(x):
if z=floor(z) and k-n1=2*n
then
ii:=1:printf(`%d %d \n`, n, n1):
else
n1:=k:
fi:
fi:
od:
od:
|
|
PROG
|
(PARI) consecutive(p, q) = {forprime(r = nextprime(p+1), precprime(q-1), if (isprime(r) && issquare(r-1), return(0)); ); return(1); }
a(n) = my(k=1); while (!(isprime(p=k^2+1) && isprime(q=(k+2*n)^2 + 1) && issquare(q-p) && consecutive(p, q)), k++); k; \\ Michel Marcus, Nov 30 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|