login
A297983
Number of nX5 0..1 arrays with every element equal to 0, 2, 3 or 6 king-move adjacent elements, with upper left element zero.
1
1, 24, 7, 23, 34, 61, 105, 222, 428, 948, 1975, 4162, 8801, 18972, 40777, 87274, 186628, 400752, 861195, 1848299, 3966219, 8516004, 18291312, 39275134, 84334723, 181112426, 388976228, 835341271, 1793949896, 3852795878, 8274644467
OFFSET
1,2
COMMENTS
Column 5 of A297986.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) +a(n-2) -a(n-3) +6*a(n-4) -9*a(n-5) -15*a(n-6) +2*a(n-7) -9*a(n-8) +6*a(n-9) +34*a(n-10) +45*a(n-11) +6*a(n-12) -21*a(n-13) -39*a(n-14) +2*a(n-15) -8*a(n-16) -38*a(n-17) -7*a(n-18) +26*a(n-19) -24*a(n-20) -48*a(n-21) +28*a(n-22) +23*a(n-23) -37*a(n-24) -4*a(n-25) +88*a(n-26) +34*a(n-27) -14*a(n-28) +7*a(n-29) +24*a(n-30) -2*a(n-31) -23*a(n-32) -6*a(n-33) -4*a(n-34) -3*a(n-35) -2*a(n-36) -2*a(n-37) for n>43
EXAMPLE
Some solutions for n=7
..0..0..0..1..1. .0..0..0..1..1. .0..1..0..0..0. .0..0..1..1..1
..0..1..1..0..1. .0..1..1..0..1. .1..1..1..0..1. .1..0..0..1..0
..1..0..1..0..0. .1..0..1..0..1. .0..0..0..0..0. .1..1..1..1..1
..1..0..1..0..1. .1..0..0..0..1. .0..1..1..1..1. .0..0..0..0..0
..1..0..1..1..1. .1..0..1..0..1. .1..0..0..0..1. .0..1..1..1..0
..1..0..1..0..1. .0..1..1..0..1. .1..0..1..1..0. .0..1..0..0..1
..1..1..0..0..0. .0..0..0..1..1. .1..1..0..0..0. .0..0..1..1..1
CROSSREFS
Cf. A297986.
Sequence in context: A339007 A339008 A068613 * A298632 A241362 A363793
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 10 2018
STATUS
approved