The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A339007 Least k such that p = k^2 + 1 and q = (k+2n)^2 + 1 are prime numbers with q - p square. 2
 24, 6, 312984, 16896, 120, 734994, 10640, 10, 1946016, 150, 171864, 180, 31200, 17136, 120, 84, 8976, 54, 137256, 300, 231504, 66, 184, 360126, 24, 5824, 2496, 224, 261696, 90, 4359344, 66, 50160, 68816, 280, 864, 1524696, 570, 219336, 11520, 8487984, 126, 22704 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS 4*n*(k + n) is a square. If n is a square, then k + n is also a square. If n is prime, then n divides k. If we add the additional condition that p and q are two consecutive primes of the form m^2 + 1, then we obtain the sequence A339008, with A339008(n) = a(n) for n = 1, 2, 3, 4, 6, 7 and 9. LINKS Table of n, a(n) for n=1..43. EXAMPLE a(1) = 24 because 24^2 + 1 = 577, (24 + 2)^2 + 1 = 677 and 677 - 577 = 10^2 is a square. The other values m such that p = m^2 + 1 and q = (m+2)^2 + 1 are primes with q - p square are 11024, 133224, 156024, 342224, 416024,... a(2) = 6 because 6^2 + 1 = 37, (6 + 4)^2 + 1 = 101 and 101 - 37 = 8^2 is a square. The other values m such that p = m^2 + 1 and q = (m+4)^2 + 1 are primes with q - p square are 16, 126, 1350, 1456, 1566, 2310, 5200,... MAPLE for n from 1 to 50 do: ii:=0: for k from 2 by 2 to 10^9 while(ii=0) do: p:=k^2+1:q:=(k+2*n)^2 +1: if isprime(p) and isprime(q) and sqrt(q-p)=floor(sqrt(q-p)) then ii:=1:printf(`%d %d \n`, n, k): else fi: od: od: PROG (PARI) a(n) = my(k=1); while (!(isprime(p=k^2+1) && isprime(q=(k+2*n)^2 + 1) && issquare(q-p)), k++); k; \\ Michel Marcus, Nov 18 2020 CROSSREFS Cf. A002496, A096012, A193558, A206328, A216330, A339008. Sequence in context: A097481 A267744 A040559 * A339008 A068613 A297983 Adjacent sequences: A339004 A339005 A339006 * A339008 A339009 A339010 KEYWORD nonn AUTHOR Michel Lagneau, Nov 18 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 2 04:44 EDT 2023. Contains 365831 sequences. (Running on oeis4.)