login
A338369
Triangle read by rows: T(n,k) = (Sum_{i=0..n-k}(1+k*i)^3)/(Sum_{i=0..n-k} (1+k*i)) for 0 <= k <= n.
0
1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 17, 13, 1, 1, 15, 31, 34, 21, 1, 1, 21, 49, 64, 57, 31, 1, 1, 28, 71, 103, 109, 86, 43, 1, 1, 36, 97, 151, 177, 166, 121, 57, 1, 1, 45, 127, 208, 261, 271, 235, 162, 73, 1, 1, 55, 161, 274, 361, 401, 385, 316, 209, 91, 1, 1, 66, 199, 349, 477, 556, 571, 519, 409, 262, 111, 1
OFFSET
0,5
COMMENTS
Seen as a square array: (1) A(n,k) = T(n+k,k) = (k^2*n^2+k*(k+2)*n+2)/2 for n,k >= 0; (2) A(n,k) = A(n-1,k) + k*(1 + k*n) for k >= 0 and n > 0; (3) A(n,k) = A(n,k-1) + k*n*(n+1) - n*(n-1)/2 for n >= 0 and k > 0; (4) G.f. of row n >= 0: (2 + (n^2+3*n-4)*x + (n^2-n+2)*x^2) / (2*(1-x)^3).
FORMULA
T(n,k) = (k^2*(n-k)^2 + k*(k+2)*(n-k) + 2)/2 for 0 <= k <= n.
T(n,0) = T(n,n) = 1 for n >= 0.
T(n,k) = T(n-1,k-1) + k*(n-k)*(n-k+1) - (n-k)*(n-k-1)/2 for 0 < k <= n.
T(n,k) = T(n-1,k) + k * (1+k*(n-k)) for 0 <= k < n.
G.f. of column k >= 0: (1 + (k^2+k-2)*t + (1-k)*t^2) * t^k / (1-t)^3.
E.g.f.: exp(x+y)*(2 + (x^2 + 2*x - 2)*y + (x^2 - 4*x + 2)*y^2 - (2*x - 5)*y^3 + y^4)/2. - Stefano Spezia, Nov 27 2020
EXAMPLE
The triangle T(n,k) for 0 <= k <= n starts:
n \k : 0 1 2 3 4 5 6 7 8 9 10 11 12
====================================================================
0 : 1
1 : 1 1
2 : 1 3 1
3 : 1 6 7 1
4 : 1 10 17 13 1
5 : 1 15 31 34 21 1
6 : 1 21 49 64 57 31 1
7 : 1 28 71 103 109 86 43 1
8 : 1 36 97 151 177 166 121 57 1
9 : 1 45 127 208 261 271 235 162 73 1
10 : 1 55 161 274 361 401 385 316 209 91 1
11 : 1 66 199 349 477 556 571 519 409 262 111 1
12 : 1 78 241 433 609 736 793 771 673 514 321 133 1
etc.
MATHEMATICA
T[n_, k_] := Sum[(1 + k*i)^3, {i, 0, n - k}]/Sum[1 + k*i, {i, 0, n - k}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 26 2020 *)
PROG
(PARI) for(n=0, 12, for(k=0, n, print1((k^2*(n-k)^2+k*(k+2)*(n-k)+2)/2, ", ")); print(" "))
CROSSREFS
Cf. A000012 (column 0, main diagonal), A000217 (column 1), A056220 (column 2), A081271 (column 3), A118057 (column 4), A002061 (1st subdiagonal), A056109 (2nd subdiagonal), A085473 (3rd subdiagonal), A272039 (4th subdiagonal).
Sequence in context: A182823 A210866 A245474 * A339231 A133713 A008278
KEYWORD
nonn,easy,tabl
AUTHOR
Werner Schulte, Nov 26 2020
STATUS
approved