OFFSET
0,5
COMMENTS
Seen as a square array: (1) A(n,k) = T(n+k,k) = (k^2*n^2+k*(k+2)*n+2)/2 for n,k >= 0; (2) A(n,k) = A(n-1,k) + k*(1 + k*n) for k >= 0 and n > 0; (3) A(n,k) = A(n,k-1) + k*n*(n+1) - n*(n-1)/2 for n >= 0 and k > 0; (4) G.f. of row n >= 0: (2 + (n^2+3*n-4)*x + (n^2-n+2)*x^2) / (2*(1-x)^3).
FORMULA
T(n,k) = (k^2*(n-k)^2 + k*(k+2)*(n-k) + 2)/2 for 0 <= k <= n.
T(n,0) = T(n,n) = 1 for n >= 0.
T(n,k) = T(n-1,k-1) + k*(n-k)*(n-k+1) - (n-k)*(n-k-1)/2 for 0 < k <= n.
T(n,k) = T(n-1,k) + k * (1+k*(n-k)) for 0 <= k < n.
G.f. of column k >= 0: (1 + (k^2+k-2)*t + (1-k)*t^2) * t^k / (1-t)^3.
E.g.f.: exp(x+y)*(2 + (x^2 + 2*x - 2)*y + (x^2 - 4*x + 2)*y^2 - (2*x - 5)*y^3 + y^4)/2. - Stefano Spezia, Nov 27 2020
EXAMPLE
The triangle T(n,k) for 0 <= k <= n starts:
n \k : 0 1 2 3 4 5 6 7 8 9 10 11 12
====================================================================
0 : 1
1 : 1 1
2 : 1 3 1
3 : 1 6 7 1
4 : 1 10 17 13 1
5 : 1 15 31 34 21 1
6 : 1 21 49 64 57 31 1
7 : 1 28 71 103 109 86 43 1
8 : 1 36 97 151 177 166 121 57 1
9 : 1 45 127 208 261 271 235 162 73 1
10 : 1 55 161 274 361 401 385 316 209 91 1
11 : 1 66 199 349 477 556 571 519 409 262 111 1
12 : 1 78 241 433 609 736 793 771 673 514 321 133 1
etc.
MATHEMATICA
T[n_, k_] := Sum[(1 + k*i)^3, {i, 0, n - k}]/Sum[1 + k*i, {i, 0, n - k}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 26 2020 *)
PROG
(PARI) for(n=0, 12, for(k=0, n, print1((k^2*(n-k)^2+k*(k+2)*(n-k)+2)/2, ", ")); print(" "))
CROSSREFS
KEYWORD
AUTHOR
Werner Schulte, Nov 26 2020
STATUS
approved