login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338371
Integers for which there exists a self-repetition that is a term of A338166.
0
13, 17, 18, 19, 26, 31, 37, 39, 48, 49, 56, 62, 65, 71, 73, 79, 81, 84, 91, 93, 94, 97, 103
OFFSET
1,1
LINKS
Chris Bispels, Muhammet Boran, Steven J. Miller, Eliel Sosis, and Daniel Tsai, v-Palindromes: An Analogy to the Palindromes, arXiv:2405.05267 [math.HO], 2024.
Daniel Tsai, A recurring pattern in natural numbers of a certain property, arXiv:2010.03151 [math.NT], 2020.
Daniel Tsai, A recurring pattern in natural numbers of a certain property, Integers (2021) Vol. 21, Article #A32.
EXAMPLE
18 is a term since 1818 is a term of A338166.
48 is a term since 484848 is a term of A338166.
List of terms with their minimum number of repetitions : [13, 15], [17, 280], [18, 2], [19, 819], [26, 15], [31, 15], [37, 12], [39, 15], [48, 3], [49, 3243], [56, 3], [62, 15], [65, 3], [71, 280], [73, 12], [79, 624], [81, 2], [84, 3], [91, 819], [93, 15], [94, 3243], [97, 624], [103, 10234].
PROG
(PARI) f(n) = my(f=factor(n)); vecsum(f[, 1]) + sum(k=1, #f~, if (f[k, 2]!=1, f[k, 2])); \\ A338038
period(vp, n) = {my(p = 1, pten = 10^#Str(n)); for (i=1, #vp, if ((vp[i] != 2) && (vp[i] != 5), p = lcm(p, znorder(Mod(pten, vp[i]))); p = lcm(p, znorder(Mod(pten, vp[i]^2))); ); ); p; }
isok(n) = {my(r = fromdigits(Vecrev(digits(n)))); my(vp = setunion(factor(n)[, 1]~, factor(r)[, 1]~)); my(nbmax = period(vp, n)); if (nbmax == 1, nbmax = 2); my(krep=1); my(pten = 10^#Str(n)); for (k=2, nbmax, krep = pten*krep+1; my(q=1); for (i=1, #vp, my(va = valuation(krep, vp[i])); q *= vp[i]^va; ); if (f(n*q) == f(r*q), return(k); ); ); }
ispal(n) = my(d=Vecrev(digits(n))); n == fromdigits(d);
lista(nn) = {for (n=1, nn, if ((n % 10) && !ispal(n), if (isok(n), print1(n, ", ")); ); ); }
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Michel Marcus, Oct 23 2020
STATUS
approved